【題目】如圖,△ABC是等邊三角形,D為BC邊上一個動點(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當四邊形ADCE的周長取最小值時,求BD的長.
【答案】(1)詳見解析;(2)詳見解析;(3)1.
【解析】
(1)由于AB=AC,AD=AE,所以只需證∠BAD=∠CAE即可得結(jié)論;
(2)證明∠ACE和∠ECF都等于60°即可;
(3)將四邊形ADCE的周長用AD表示,AD最小時就是四邊形ADCE的周長最小,根據(jù)垂線段最短原理,當AD⊥BC時,AD最小,此時BD就是BC的一半.
(1)證明:∵△ABC是等邊三角形,
∴AB=AC,∠BAC=60°,
∵∠DAE=60°,
∴∠BAD+∠DAC=∠CAE+∠DAC,
即∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE.
(2)證明:∵△ABC是等邊三角形,
∴∠B=∠BCA=60°,
∵△ABD≌△ACE,
∴∠ACE=∠B=60°,
∵△ABD≌△ACE,
∴∠ACE=∠B=60°,
∴∠ECF=180﹣∠ACE﹣∠BCA=60°,
∴∠ACE=∠ECF,
∴CE平分∠ACF.
(3)解:∵△ABD≌△ACE,
∴CE=BD,
∵△ABC是等邊三角形,
∴AB=BC=AC=2,
∴四邊形ADCE的周長=CE+DC+AD+AE=BD+DC+2AD=2+2AD,
根據(jù)垂線段最短,當AD⊥BC時,AD值最小,四邊形ADCE的周長取最小值,
∵AB=AC,
∴BD=BC=.
科目:初中數(shù)學 來源: 題型:
【題目】某商場服裝部為了調(diào)動營業(yè)員的積極性,決定實行目標管理,即確定一個月銷售目標,根據(jù)目標完成的情況對營業(yè)員進行適當?shù)莫剳停疄榱舜_定一個適當?shù)哪繕,商場統(tǒng)計了每個營業(yè)員在某月的銷售額,統(tǒng)計圖如下:
請你結(jié)合統(tǒng)計圖和平均數(shù)、眾數(shù)和中位數(shù)解答下列問題:(結(jié)果保留整數(shù))
(1)月銷售額在哪個值的人最多?月銷售額處于中間的是多少?月平均銷售額是多少?
(2)如果想確定一個較高的銷售目標,你認為月銷售額定為多少合適?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:求代數(shù)式y2+4y+8的最小值.
解:y2+4y+8=y2+4y+4+4=(y+2)2+4
∵(y+2)2≥0
∴(y+2)2+4≥4
∴y2+4y+8的最小值是4.
(1)求代數(shù)式m2+m+4的最小值;
(2)求代數(shù)式4﹣x2+2x的最大值;
(3)某居民小區(qū)要在一塊一邊靠墻(墻長15m)的空地上建一個長方形花園ABCD,花園一邊靠墻,另三邊用總長為20m的柵欄圍成.如圖,設(shè)AB=x(m),請問:當x取何值時,花園的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊不規(guī)則的四邊形地皮ABCO,各個頂點的坐標分別為A(-2,6),B(-5,4),C(-7,0),O(0,0)(圖上一個單位長度表示10米),現(xiàn)在想對這塊地皮進行規(guī)劃,需要確定它的面積.
(1)求這個四邊形的面積;
(2)如果把四邊形ABCD的各個頂點的縱坐標保持不變,橫坐標加2,所得到的四邊形面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】方法回顧:在進行數(shù)值估算時,我們常根據(jù)所求數(shù)值的條件確定它的大致范圍,然后通過逐步縮小數(shù)值存在范圍的方法,最終求得較為準確的數(shù)值.
如我們在探究面積為2的正方形的邊長a的值時,有如下探究過程:
1<a<2 | 1<s<4 |
1.4<a<1.5 | 1.96<s<2.25 |
1.41<a<1.42 | 1.9881<s<2.0164 |
1.414<a<1.415 | 1.999396<s<2.002225 |
我們也可以借助數(shù)軸直觀地看出“逐步縮小數(shù)值的存在范圖”的過程,
這種方法在我們的解決向題的過程中經(jīng)常會用到
問題提出:a是小于100的正整數(shù),已知它的立方,不借助計算器,如何確定a呢?
問題探究:我們不妨由簡單到復雜,從一位整數(shù)的立方開始硏究
步驟一、若13<a3<103,則1<a<10.即已知一個一位整數(shù)的立方為a3,怎樣確定a?
易得:13=1,23=8,33=27,43=64,53=125,63=216,73=343:83=512,93=729,可以通過從1到9的九個整數(shù)的立方值確定這個數(shù).觀察這九個立方值我們還能發(fā)現(xiàn),他們的個位數(shù)字各不相同.
步驟二、若103<a3<1003.則10<a<100,即已知一個兩位數(shù)的立方為a3,怎樣確定a?我們不妨舉幾個特例,以便尋找解決問題的方法.
特例1.如果一個兩位整數(shù)a的立方是5832,怎樣確定a?
因為103<5832<1003,所以10<a<100,a是一個兩位數(shù).
又因為103<5832<203,所以我們可以確定5832的十位數(shù)字是 ;再根據(jù)步驟一我們就能得出它的個位數(shù)是 ;從而確定這個兩位數(shù)是 .
特例2.如果x是一個兩位整數(shù),且x3=614125,請你仿照上面的過程說明你確定這個兩位整數(shù)的方法.
拓展應(yīng)用:一顆近似球形的小行星的體積的為2624000πm3,請你根據(jù)以上方法求出這個小行星的半徑.(球的體積公式v=πR3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC,BD為圓O的兩條互相垂直的直徑,動點P從圓心O出發(fā),沿O→C→D→O的路線作勻速運動,設(shè)運動時間為t秒,∠APB的度數(shù)為y度,那么表示y與t之間函數(shù)關(guān)系的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,兩個函數(shù)y=x,y=﹣x+6的圖象交于點A.動點P從點O開始沿OA方向以每秒1個單位的速度運動,作PQ∥x軸交直線BC于點Q,以PQ為一邊向下作正方形PQMN,設(shè)它與△OAB重疊部分的面積為S.
(1)求點A的坐標.
(2)試求出點P在線段OA上運動時,S與運動時間t(秒)的關(guān)系式.
(3)在(2)的條件下,S是否有最大值若有,求出t為何值時,S有最大值,并求出最大值;若沒有,請說明理由.
(4)若點P經(jīng)過點A后繼續(xù)按原方向、原速度運動,當正方形PQMN與△OAB重疊部分面積最大時,運動時間t滿足的條件是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是一個長為,寬為的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖2形狀拼成一個正方形.
(1)請用兩種不同方法,求圖2中陰影部分的面積(不用化簡)
方法1:____________________
方法2:____________________
(2)觀察圖2,寫出,,之間的等量關(guān)系,并驗證;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:
①若,,求的值;
②若,,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在ABCD中,對角線AC與BD相交于點O,過點O作一條直線分別交AB,CD于點E,F(xiàn).
(1)求證:OE=OF;
(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com