【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x+6)2=51
(2)x2﹣2x=2x﹣1
(3)x2﹣x=2
(4)x(x﹣7)=8(7﹣x)
【答案】(1)x1=﹣6+, x2=﹣6﹣;(2)x1=2+, x2=2﹣;(3)x1=, x2=;(4)x1=﹣8,x2=7
【解析】
(1)根據(jù)直接開(kāi)方法即可求出答案;
(2)根據(jù)配方法即可求出答案;
(3)根據(jù)公式法即可求出答案;
(4)根據(jù)因式分解法即可求出答案;
解:(1)∵(x+6)2=51,
∴x+6=±,
∴x1=﹣6+, x2=﹣6﹣;
(2)∵x2﹣2x=2x﹣1,
∴x2﹣4x=﹣1,
∴x2﹣4x+4=3,
∴(x﹣2)2=3,
∴x=2±
∴x1=2+, x2=2﹣;
(3)原方程化為x2﹣x﹣2=0,
∴a=1,b=,c=﹣2,
∴△=2+8=10,
∴x=
∴x1=, x2=;
(4)∵x(x﹣7)=8(7﹣x),
∴x(x﹣7)﹣8(7﹣x)=0,
∴(x+8)(x﹣7)=0,
∴x1=﹣8,x2=7;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角,墻DF足夠長(zhǎng),墻DE長(zhǎng)為9米,現(xiàn)用20米長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD,點(diǎn)C在墻DF上,點(diǎn)A在墻DE上,(籬笆只圍AB,BC兩邊).
(Ⅰ)根據(jù)題意填表;
BC(m) | 1 | 3 | 5 | 7 |
矩形ABCD面積(m2) |
|
|
|
|
(Ⅱ)能夠圍成面積為100m2的矩形花園嗎?如能說(shuō)明圍法,如不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是邊BC的中點(diǎn),DE⊥AC、DF⊥AB,垂足分別是E、F,且BF=CE.
(1)求證:DE=DF;
(2)當(dāng)∠A=90°時(shí),試判斷四邊形AFDE是怎樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點(diǎn),且OD∥BC,OD與AC交于點(diǎn)E.
(1)若∠B=70°,求∠CAD的度數(shù);
(2)若AB=4,AC=3,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+bx+c的對(duì)稱軸l交x軸于點(diǎn)A.
(1)若此拋物線經(jīng)過(guò)點(diǎn)(1,2),當(dāng)點(diǎn)A的坐標(biāo)為(2,0)時(shí),求此拋物線的解析式;
(2)拋物線y=x2+bx+c交y軸于點(diǎn)B,將該拋物線平移,使其經(jīng)過(guò)點(diǎn)A,B,且與x軸交于另一點(diǎn)C.若b2=2c,b≤﹣1,比較線段OB與OC+的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個(gè)公共點(diǎn)A
(1)當(dāng)a=時(shí),求點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)A的直線y=x+k與二次函數(shù)的圖象相交于另一點(diǎn)B,當(dāng)b≥﹣1時(shí),求點(diǎn)B的橫坐標(biāo)m的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(4,3),B(9,3),將線段AB向下平移3個(gè)得到DC,其中點(diǎn)A與點(diǎn)D對(duì)應(yīng),點(diǎn)B與點(diǎn)C對(duì)應(yīng).
(1)畫(huà)出線段DC,并直接寫(xiě)出點(diǎn)D的坐標(biāo) ;
(2)連接AD和BC得到四邊形ABCD繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°后得到四邊形EFGD,點(diǎn)A與E對(duì)應(yīng),點(diǎn)B與點(diǎn)F對(duì)應(yīng),點(diǎn)C與點(diǎn)G對(duì)應(yīng).
①請(qǐng)畫(huà)出四邊形EFGD,并直接寫(xiě)出點(diǎn)F的坐標(biāo) ;
②連接DB、DF、BF,△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小穎和小紅兩名同學(xué)在學(xué)習(xí)“概率”時(shí),做擲骰子(質(zhì)地均勻的正方體)試驗(yàn)。
(1)小穎和小紅在實(shí)驗(yàn)中如果各擲一枚骰子,那么兩枚骰子朝上的點(diǎn)數(shù)之和為多少時(shí)的概率最大?試用列表或畫(huà)樹(shù)狀圖的方法加以說(shuō)明,并求出其最大概率。
(2)他們?cè)谝淮螌?shí)驗(yàn)中共擲骰子60次,試驗(yàn)的結(jié)果如下:
①填空:此次實(shí)驗(yàn)中“5點(diǎn)朝上”的頻率為______;
②小紅說(shuō):“根據(jù)實(shí)驗(yàn),出現(xiàn)5點(diǎn)朝上的概率最大。”她的說(shuō)法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com