【題目】如圖,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,其中AC+BD=14,CD=5.
(1)若四邊形ABCD是平行四邊形,則△OCD的周長(zhǎng)為_____________;
(2) 若四邊形ABCD是矩形,則AD的長(zhǎng)為_____________;
(3) 若四邊形ABCD是菱形,則菱形的面積為___________.
【答案】 12, , 24
【解析】分析:(1)根據(jù)平行四邊形性質(zhì)求出OD+OC即可求出答案;
(2)根據(jù)矩形性質(zhì)求出AC,根據(jù)勾股定理求出即可;
(3)根據(jù)矩形性質(zhì)求出OD+OC,根據(jù)勾股定理求出OC×OD,進(jìn)一步求出AC×BD,即可求出面積.
詳解:(1) ∵四邊形ABCD是平行四邊形,
, ,
,
,
的周長(zhǎng)為 ,
故答案為:12.
(2) 矩形ABCD,
,
,
由勾股定理得: ,
故答案為: ;
(3) , 四邊形ABCD是菱形,
由勾股定理得: ,
,
,
,
∴菱形的面積為是 ,
故答案為:24.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在坐標(biāo)系中放置一菱形OABC,已知∠ABC=60°,OA=1.先將菱形OABC沿x軸的正方向無(wú)滑動(dòng)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,連續(xù)翻轉(zhuǎn)2014次,點(diǎn)B的落點(diǎn)依次為B1,B2,B3,…,則B2014的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們都知道無(wú)限不循環(huán)小數(shù)是無(wú)理數(shù),而無(wú)限循環(huán)小數(shù)是可以化成分?jǐn)?shù)的。例如(3為循環(huán)節(jié))是可以化成分?jǐn)?shù)的,方法如下:
令①
則②
②-①得
所以可以化成分?jǐn)?shù)為
請(qǐng)你閱讀上面材料完成下列問(wèn)題:
(1)()化成分?jǐn)?shù)是 .
(2)請(qǐng)你將()化為分?jǐn)?shù).
(3)請(qǐng)你將()化為分?jǐn)?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測(cè)每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過(guò)或不足的部分分別用正、負(fù)數(shù)來(lái)表示,記錄如下表:
與標(biāo)準(zhǔn)質(zhì)量的差值 | 5 | 2 | 0 | 1 | 3 | 6 |
袋 數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾克?
(2)若每袋標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測(cè)的總質(zhì)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在解決數(shù)學(xué)問(wèn)題的過(guò)程中,我們常用到“分類(lèi)討論”的數(shù)學(xué)思想,下面是運(yùn)用分類(lèi)討論的數(shù)學(xué)思想解決問(wèn)題的過(guò)程,請(qǐng)仔細(xì)閱讀,并解答題目后提出的(探究).
(提出問(wèn)題)兩個(gè)有理數(shù)a、b滿足a、b同號(hào),求的值.
(解決問(wèn)題)解:由a、b同號(hào),可知a、b有兩種可能:①當(dāng)a,b都正數(shù);②當(dāng)a,b都是負(fù)數(shù).①若a、b都是正數(shù),即a>0,b>0,有|a|=a,|b|=b,則==1+1=2;②若a、b都是負(fù)數(shù),即a<0,b<0,有|a|=﹣a,|b|=﹣b,則==(﹣1)+(﹣1)=﹣2,所以的值為2或﹣2.
(探究)請(qǐng)根據(jù)上面的解題思路解答下面的問(wèn)題:
(1)兩個(gè)有理數(shù)a、b滿足a、b異號(hào),求的值;
(2)已知|a|=3,|b|=7,且a<b,求a+b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD的兩條對(duì)稱軸為坐標(biāo)軸,點(diǎn)A的坐標(biāo)為(2,1).一張透明紙上畫(huà)有一個(gè)點(diǎn)和一條拋物線,平移透明紙,這個(gè)點(diǎn)與點(diǎn)A重合,此時(shí)拋物線的函數(shù)表達(dá)式為y=x2 , 再次平移透明紙,使這個(gè)點(diǎn)與點(diǎn)C重合,則該拋物線的函數(shù)表達(dá)式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(如圖(1),在矩形ABCD中,AB=4,BC=3,點(diǎn)E是射線CD上的一個(gè)動(dòng)點(diǎn),把△BCE沿BE折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為F.
(1)若點(diǎn)F剛好落在線段AD的垂直平分線上時(shí),求線段CE的長(zhǎng);
(2)若點(diǎn)F剛好落在線段AB的垂直平分線上時(shí),求線段CE的長(zhǎng);
(3)當(dāng)射線AF交線段CD于點(diǎn)G時(shí),請(qǐng)直接寫(xiě)出CG的最大值 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】交通工程學(xué)理論把在單向道路上行駛的汽車(chē)看成連續(xù)的液體,并用流量、速度、密度三個(gè)概念描述車(chē)流的基本特征。其中流量q(輛/小時(shí))指單位時(shí)間內(nèi)通過(guò)道路指定斷面的車(chē)輛數(shù);速度v(千米/小時(shí))指通過(guò)道路指定斷面的車(chē)輛速度;密度(輛/千米)指通過(guò)道路指定斷面單位長(zhǎng)度內(nèi)的車(chē)輛數(shù),為配合大數(shù)據(jù)治堵行動(dòng),測(cè)得某路段流量q與速度v之間的部分?jǐn)?shù)據(jù)如下表:
速度v(千米/小時(shí)) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量q(輛/小時(shí)) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根據(jù)上表信息,下列三個(gè)函數(shù)關(guān)系式中,刻畫(huà)q,v關(guān)系最準(zhǔn)確的是(只需填上正確答案的序號(hào))① ② ③
(2)請(qǐng)利用(1)中選取的函數(shù)關(guān)系式分析,當(dāng)該路段的車(chē)流速為多少時(shí),流量達(dá)到最大?最大流量是多少?
(3)已知q,v,k滿足 ,請(qǐng)結(jié)合(1)中選取的函數(shù)關(guān)系式繼續(xù)解決下列問(wèn)題:
①市交通運(yùn)行監(jiān)控平臺(tái)顯示,當(dāng) 時(shí)道路出現(xiàn)輕度擁堵,試分析當(dāng)車(chē)流密度k在什么范圍時(shí),該路段出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設(shè)前后兩車(chē)車(chē)頭之間的距離d(米)均相等,求流量q最大時(shí)d的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)x是正實(shí)數(shù),我們用{x}表示不小于x的最小正整數(shù),如{0.7}=1,{2}=2,{3.1}=4,在此規(guī)定下任一正實(shí)數(shù)都能寫(xiě)成如下形式:x={x}-m,其中O≤m<l.
(1)直接寫(xiě)出{x}與x,x+1的大小關(guān)系:
(2)根據(jù)(1)中的關(guān)系式,求滿足{2x-1}=3的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com