【題目】我們定義:有一組鄰角相等的凸四邊形叫做“等鄰角四邊形”
(1)概念理解:
請(qǐng)你根據(jù)上述定義舉一個(gè)等鄰角四邊形的例子;
(2)問題探究;
如圖1,在等鄰角四邊形ABCD中,∠DAB=∠ABC,AD,BC的中垂線恰好交于AB邊上一點(diǎn)P,連結(jié)AC,BD,試探究AC與BD的數(shù)量關(guān)系,并說明理由;
(3)應(yīng)用拓展;
如圖2,在Rt△ABC與Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,將Rt△ABD繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)角α(0°<∠α<∠BAC)得到Rt△AB′D′(如圖3),當(dāng)凸四邊形AD′BC為等鄰角四邊形時(shí),求出它的面積.
【答案】(1)矩形或正方形;(2)AC=BD;(3)或.
【解析】
試題分析:(1)矩形或正方形鄰角相等,滿足“等鄰角四邊形”條件;
(2)AC=BD,理由為:連接PD,PC,如圖1所示,根據(jù)PE、PF分別為AD、BC的垂直平分線,得到兩對(duì)角相等,利用等角對(duì)等角得到兩對(duì)角相等,進(jìn)而確定出∠APC=∠DPB,利用SAS得到三角形ACB與三角形DPB全等,利用全等三角形對(duì)應(yīng)邊相等即可得證;
(3)分兩種情況考慮:(i)當(dāng)∠AD′B=∠D′BC時(shí),延長(zhǎng)AD′,CB交于點(diǎn)E,如圖3(i)所示,由S四邊形ACBD′=S△ACE﹣S△BED′,求出四邊形ACBD′面積;(ii)當(dāng)∠D′BC=∠ACB=90°時(shí),過點(diǎn)D′作D′E⊥AC于點(diǎn)E,如圖3(ii)所示,由S四邊形ACBD′=S△AED′+S矩形ECBD′,求出四邊形ACBD′面積即可.
試題解析:(1)矩形或正方形;
(2)AC=BD,理由為:
連接PD,PC,如圖1所示:
∵PE是AD的垂直平分線,PF是BC的垂直平分線,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;
(3)分兩種情況考慮:
(i)當(dāng)∠AD′B=∠D′BC時(shí),延長(zhǎng)AD′,CB交于點(diǎn)E,如圖3(i)所示,
∴∠ED′B=∠EBD′,∴EB=ED′,設(shè)EB=ED′=x,由勾股定理得:,解得:x=4.5,過點(diǎn)D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴,即,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,則S四邊形ACBD′=S△ACE﹣S△BED′=15﹣=;
(ii)當(dāng)∠D′BC=∠ACB=90°時(shí),過點(diǎn)D′作D′E⊥AC于點(diǎn)E,如圖3(ii)所示,∴四邊形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根據(jù)勾股定理得:AE==,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=,則S四邊形ACBD′=S△AED′+S矩形ECBD′==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級(jí)一班5名女生進(jìn)行體育測(cè)試,她們的成績(jī)分別為70,80,85,75,85(單位:分),這次測(cè)試成績(jī)的眾數(shù)和中位數(shù)分別是( 。
A.79,85 B.80,79 C.85,80 D.85,85
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣2x+8與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長(zhǎng)方形OABC.
(1)求點(diǎn)A、C的坐標(biāo);
(2)將△ABC對(duì)折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式;
(3)在(2)的條件下,坐標(biāo)平面內(nèi)是否存在點(diǎn)P(除點(diǎn)B外),使得△APC與△ABC全等?若存在,直接寫出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)物體沿著南北方向在運(yùn)動(dòng),若規(guī)定向南記作正,向北記作負(fù),則該物體:
原地不動(dòng)記作米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2 , 直線l3和直線l1、l2交于點(diǎn)C和D,在直線CD上有一點(diǎn)P.
(1)如果P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),問∠PAC,∠APB,∠PBD有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
(2)若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠α和∠β互補(bǔ),且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).正確的有( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】O為直線DA上一點(diǎn),OB⊥OF,EO是∠AOB的平分線.
(1)如圖(1),若∠AOB=130°,求∠EOF的度數(shù);
(2)若∠AOB=α,90°<α<180°,求∠EOF的度數(shù);
(3)若∠AOB=α,0°<α<90°,請(qǐng)?jiān)趫D(2)中畫出射線OF,使得(2)中∠EOF的結(jié)果仍然成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com