精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠ACB=90°,AC=6,sinB=
35
,點(diǎn)D是邊BC的中點(diǎn),CE⊥AD,垂足為E.
求:(1)線段CD的長(zhǎng);
(2)cos∠DCE的值.
分析:(1)在直角△ABC中,根據(jù)∠B的正弦即可求得AC,根據(jù)勾股定理即可求得BC,進(jìn)而得到CD的長(zhǎng);
(2)∠DCE=∠CAD,只要在直角△ACD中求出∠CAD的余弦值即可.
解答:解:(1)在Rt△ABC中,∵∠C=90°,AC=6,sinB=
3
5

∴AB=
AC
sinB
=6×
5
3
=10.(2分)
BC=
AB2-AC2
=
102-62
=8.(4分)
CD=
1
2
BC=4;(5分)

(2)在Rt△ACD中,∵CE⊥AD,
∴∠CAD=90°-∠ACE=∠DCE.(6分)
AD=
AC2+CD2
=
62+42
=2
13
.(7分)
∴cos∠DCE=cos∠CAD=
AC
AD
=
6
2
13
=
3
13
13
.(10分)
點(diǎn)評(píng):在銳角的三角函數(shù)中,已知其中的一個(gè)就可求出另外幾個(gè),并且三角函數(shù)值的大小只與角的大小有關(guān),而與所在三角形無(wú)關(guān).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過(guò)點(diǎn)B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E是BC的中點(diǎn),連結(jié)DE.
(1)求證:DE與⊙O相切;
(2)連結(jié)OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點(diǎn)D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
(1)求出cosB的值;
(2)用含y的代數(shù)式表示AE;
(3)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(4)設(shè)四邊形DECF的面積為S,求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

查看答案和解析>>

同步練習(xí)冊(cè)答案