【題目】如圖,在平面直角坐標系中,拋物線yax22ax+a0)與y軸交于點A,過點Ax軸的平行線交拋物線于點MP為拋物線的頂點.若直線OP交直線AM于點B,且M為線段AB的中點,則a的值為_____

【答案】2

【解析】

先根據(jù)拋物線解析式求出點A的坐標和其對稱軸,再根據(jù)對稱性求出點M的坐標,利用點M為線段AB中點,得出點B的坐標;用含a的式子表示出點P的坐標,寫出直線OP的解析式,再將點B的坐標代入即可求得答案.

∵拋物線yax22ax+a0)與y軸交于點A,

A0,),拋物線的對稱軸為x1

∴頂點P坐標為(1a),點M坐標為(2

∵點M為線段AB的中點,

∴點B坐標為(4

設直線OP解析式為ykxk為常數(shù),且k≠0

將點P1,)代入ykxk

∴直線OP解析式為:y=(x

將點B4,)代入y=(x=(×4

解得:a2

故答案為:2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩臺機床同時加工直徑為的同種規(guī)格零件,為了檢查兩臺機床加工零件的穩(wěn)定性,質檢員從兩臺機床的產(chǎn)品中各抽取件進行檢測,結果如下(單位:):

(1)分別求出這兩臺機床所加工零件直徑的平均數(shù)和方差;

(2)根據(jù)所學的統(tǒng)計知識,你認為哪一臺機床生產(chǎn)零件的穩(wěn)定性更好一些,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,動點M、N同時從A點出發(fā),點M沿AB以每秒1個單位長度的速度向中點B運動,點N沿折現(xiàn)ADC以每秒2個單位長度的速度向終點C運動,設運動時間為t秒,則CMN的面積為S關于t函數(shù)的圖象大致是(  )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,EAB的中點,過點EECOA于點C,過點B作⊙O的切線交CE的延長線于點D.

(1)求證:DB=DE;

(2)若AB=12,BD=5,過D點作DFAB于點F,

①則cosEDF=  ;

②求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠C90°,ACBC6cm,動點P從點C出發(fā)以1cm/s的速度沿CA勻速運動,同時動點Q從點A出發(fā)以cm/s的速度沿AB勻速運動,當點P到達點A時,點P、Q同時停止運動,設運動時間為ts

1)當t3時,線段PQ的長為   cm;

2)是否存在某一時刻t,使點B在線段PQ的垂直平分線上?若存在,求出t的值;若不存在,請說明理由;

3)如圖2,以PC為邊,往CB方向作正方形CPMN,設四邊形CPMNRtABC重疊部分的面積為S,求S關于t的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程

1(x-1)2=4

22(x-3)=3x(x-3)

3x2-2x-5=0

43x2=4-2x

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A1,0),C02).

1)求拋物線的表達式;

2)在拋物線的對稱軸上是否存在點P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;

3)點E時線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明到青城山游玩,乘坐纜車,當?shù)巧嚼|車的吊箱經(jīng)過點A到達點B時,它經(jīng)過了200 m,纜車行駛的路線與水平夾角∠α=16°,當纜車繼續(xù)由點B到達點D時,它又走過了200 m,纜車由點B到點D的行駛路線與水平夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有四張背面完全相同的卡片,正面上分別標有數(shù)字﹣2,﹣1,1,2.把這四張卡片背面朝上,隨機抽取一張,記下數(shù)字為m;放回攪勻,再隨機抽取一張卡片,記下數(shù)字為n,則ymx+n不經(jīng)過第三象限的概率為_____

查看答案和解析>>

同步練習冊答案