【題目】(1)問(wèn)題提出:蘇科版《數(shù)學(xué)》九年級(jí)(上冊(cè))習(xí)題2.1有這樣一道練習(xí)題:如圖①,BD、CE是△ABC的高,M是BC的中點(diǎn),點(diǎn)B、C、D、E是否在以點(diǎn)M為圓心的同一個(gè)圓上?為什么?
在解決此題時(shí),若想要說(shuō)明“點(diǎn)B、C、D、E在以點(diǎn)M為圓心的同一個(gè)圓上”,在連接MD、ME的基礎(chǔ)上,只需證明 .
(2)初步思考:如圖②,BD、CE是銳角△ABC的高,連接DE.求證:∠ADE=∠ABC,小敏在解答此題時(shí),利用了“圓的內(nèi)接四邊形的對(duì)角互補(bǔ)”進(jìn)行證明.(請(qǐng)你根據(jù)小敏的思路完成證明過(guò)程.)
(3)推廣運(yùn)用:如圖③,BD、CE、AF是銳角△ABC的高,三條高的交點(diǎn)G叫做△ABC的垂心,連接DE、EF、FD,求證:點(diǎn)G是△DEF的內(nèi)心.
【答案】(1)ME=MD=MB=MC;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.
【解析】
(1)要證四個(gè)點(diǎn)在同一圓上,即證明四個(gè)點(diǎn)到定點(diǎn)距離相等.
(2)由“直角三角形斜邊上的中線(xiàn)等于斜邊的一半”,即能證ME=MD=MB=MC,得到四邊形BCDE為圓內(nèi)接四邊形,故有對(duì)角互補(bǔ).
(3)根據(jù)內(nèi)心定義,需證明DG、EG、FG分別平分∠EDF、∠DEF、∠DFE.由點(diǎn)B、C、D、E四點(diǎn)共圓,可得同弧所對(duì)的圓周角∠CBD=∠CED.又因?yàn)椤?/span>BEG=∠BFG=90°,根據(jù)(2)易證點(diǎn)B、F、G、E也四點(diǎn)共圓,有同弧所對(duì)的圓周角∠FBG=∠FEG,等量代換有∠CED=∠FEG,同理可證其余兩個(gè)內(nèi)角的平分線(xiàn).
解:(1)根據(jù)圓的定義可知,當(dāng)點(diǎn)B、C、D、E到點(diǎn)M距離相等時(shí),即他們?cè)趫AM上
故答案為:ME=MD=MB=MC
(2)證明:連接MD、ME
∵BD、CE是△ABC的高
∴BD⊥AC,CE⊥AB
∴∠BDC=∠CEB=90°
∵M為BC的中點(diǎn)
∴ME=MD=BC=MB=MC
∴點(diǎn)B、C、D、E在以點(diǎn)M為圓心的同一個(gè)圓上
∴∠ABC+CDE=180°
∵∠ADE+∠CDE=180°
∴∠ADE=∠ABC
(3)證明:取BG中點(diǎn)N,連接EN、FN
∵CE、AF是△ABC的高
∴∠BEG=∠BFG=90°
∴EN=FN=BG=BN=NG
∴點(diǎn)B、F、G、E在以點(diǎn)N為圓心的同一個(gè)圓上
∴∠FBG=∠FEG
∵由(2)證得點(diǎn)B、C、D、E在同一個(gè)圓上
∴∠FBG=∠CED
∴∠FEG=∠CED
同理可證:∠EFG=∠AFD,∠EDG=∠FDG
∴點(diǎn)G是△DEF的內(nèi)心
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量家門(mén)前小河的寬.測(cè)量時(shí),他們選擇了河對(duì)岸邊的一棵大樹(shù),將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長(zhǎng)線(xiàn)上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線(xiàn).
已知:CB⊥AD,ED⊥AD,測(cè)得BC=1m,DE=1.5m,BD=8.5m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=ax2+bx+3經(jīng)過(guò)點(diǎn)A(﹣1,0),B(3,0),與y軸交于點(diǎn)C.點(diǎn)D(xD,yD)為拋物線(xiàn)上一個(gè)動(dòng)點(diǎn),其中1<xD<3.連接AC,BC,DB,DC.
(1)求該拋物線(xiàn)的解析式;
(2)當(dāng)△BCD的面積等于△AOC的面積的2倍時(shí),求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,若點(diǎn)M是x軸上一動(dòng)點(diǎn),點(diǎn)N是拋物線(xiàn)上一動(dòng)點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形.若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有A,B,C,D四張不透明的卡片,除正面上的圖案不同外,其他均相同.將這4張卡片背面向上洗勻后放在桌面上.
(Ⅰ)從中隨機(jī)取出1張卡片,卡片上的圖案是中心對(duì)稱(chēng)圖形的概率是_____;
(Ⅱ)若從中隨機(jī)抽取一張卡片,不放回,再?gòu)氖O碌?/span>3張中隨機(jī)抽取1張卡片,請(qǐng)用畫(huà)樹(shù)形圖或列表的方法,求兩次抽取的卡片都是軸對(duì)稱(chēng)圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量家門(mén)前小河的寬.測(cè)量時(shí),他們選擇了河對(duì)岸邊的一棵大樹(shù),將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長(zhǎng)線(xiàn)上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線(xiàn).
已知:CB⊥AD,ED⊥AD,測(cè)得BC=1m,DE=1.5m,BD=8.5m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)舉行“中國(guó)夢(mèng),我的夢(mèng)”的演講比賽,賽后整理參賽學(xué)生的成績(jī),將學(xué)生的成績(jī)分為A、B、C、D四個(gè)等級(jí),并將結(jié)果繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,但均不完整,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題.
(1)參加比賽的學(xué)生共有 名,在扇形統(tǒng)計(jì)圖中,表示“D等級(jí)”的扇形的圓心角為 度,圖中m的值為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)組委會(huì)決定分別從本次比賽中獲利A、B兩個(gè)等級(jí)的學(xué)生中,各選出1名學(xué)生培訓(xùn)后搭檔去參加市中學(xué)生演講比賽,已知甲的等級(jí)為A,乙的等級(jí)為B,求同時(shí)選中甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)動(dòng)品牌對(duì)第一季度A、B兩款運(yùn)動(dòng)鞋的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),兩款運(yùn)動(dòng)鞋的銷(xiāo)售量及總銷(xiāo)售額如圖10所示:
(1)一月份B款運(yùn)動(dòng)鞋的銷(xiāo)售量是A款的,則一月份B款運(yùn)動(dòng)鞋銷(xiāo)售了多少雙?
(2)第一季度這兩款運(yùn)動(dòng)鞋的銷(xiāo)售單價(jià)保持不變,求三月份的總銷(xiāo)售額(銷(xiāo)售額=銷(xiāo)售單價(jià)×銷(xiāo)售量);
(3)結(jié)合第一季度的銷(xiāo)售情況,請(qǐng)你對(duì)這兩款運(yùn)動(dòng)鞋的進(jìn)貨、銷(xiāo)售等方面提出一條建議。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖象與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),作直線(xiàn),將直線(xiàn)下方的二次函數(shù)圖象沿直線(xiàn)向上翻折,與其它剩余部分組成一個(gè)組合圖象,若線(xiàn)段與組合圖象有兩個(gè)交點(diǎn),則的取值范圍為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“早黑寶”葡萄品種是我省農(nóng)科院研制的優(yōu)質(zhì)新品種,在我省被廣泛種植,鄧州市某葡萄種植基地2017年種植“早黑寶”100畝,到2019年“卓黑寶”的種植面積達(dá)到196畝.
(1)求該基地這兩年“早黑寶”種植面積的平均增長(zhǎng)率;
(2)市場(chǎng)調(diào)查發(fā)現(xiàn),當(dāng)“早黑寶”的售價(jià)為20元/千克時(shí),每天能售出200千克,售價(jià)每降價(jià)1元,每天可多售出50千克,為了推廣宣傳,基地決定降價(jià)促銷(xiāo),同時(shí)減少庫(kù)存,已知該基地“早黑寶”的平均成本價(jià)為12元/千克,若使銷(xiāo)售“早黑寶”每天獲利1750元,則售價(jià)應(yīng)降低多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com