精英家教網(wǎng)如圖,⊙O1與⊙O2相交于A、B.已知兩圓的半徑r1=10,r2=17,圓心距O1O2=21,公共弦AB等于(  )
A、2
65
B、16
C、6
7
D、17
分析:連接O1A,O2A,由相交兩圓的連心線,垂直平分公共弦可得AB⊥O1O2,且AD=BD,設(shè)AD=x,O2D=y,O1D=21-y,根據(jù)勾股定理列方程組,求解即可.
解答:精英家教網(wǎng)解:連接O1A,O2A,
因為AB公共弦,所以AB⊥O1O2,且AD=BD.
設(shè)AD=x,O2D=y,則O1D=21-y,
所以
172-x2=y2
102-x2=(21-y)2

解得y=15,
則x=
172-152
=8,
故AB=8×2=16.
故選B.
點評:本題綜合考查了直線與圓、圓與圓的位置關(guān)系,注意:相交兩圓的連心線,垂直平分公共弦.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、已知:如圖,⊙O1與⊙O2外切于點P,直線AB過點P交⊙O1于A,交⊙O2于B,點C、D分別為⊙O1、⊙O2上的點,且∠ACP=65°,則∠BDP=
65
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,⊙O1與⊙O2外切于M點,AF是兩圓的外公切線,A、B是切點,DF經(jīng)過O1、O2,分別交⊙O1于D、⊙O2于E,AC是⊙O1的直徑,BC經(jīng)過M點,連接AD.
(1)求證:AD∥BC;
(2)求證:MF2=AF•BF;
(3)如果⊙O1的直徑長為8,tan∠ACB=
34
,求⊙O2的直徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O1與⊙O2相交于C、D兩點,⊙O1的割線PAB與DC的延長線交于點P,PN與⊙O2相切于點N,若PB=10,AB=6,則PN=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,⊙O1與⊙O2外切于A點,直線l與⊙O1、⊙O2分別切于B,C點,若⊙O1的半徑r1=2cm,⊙O2的半徑r2=3cm.求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知如圖:⊙O1與⊙O2相交于AB兩點,過點A、B的直線分別與⊙O1交于C、E,與⊙O2交于D、F,連接CE、DF.
求證:CE∥DF.

查看答案和解析>>

同步練習(xí)冊答案