【題目】如圖,正方形的邊長為4,點(diǎn)是正方形外一動點(diǎn),,的中點(diǎn),當(dāng)運(yùn)動時,線段的最大值為(  )

A. B. C. D.

【答案】D

【解析】分析:連接AC,BD交于點(diǎn)O,連接PO,EO,根據(jù)A,C,E,D四點(diǎn)共圓,可得OE=OD=BD=2,再根據(jù)PE≤OP+OE=2+2,可得當(dāng)點(diǎn)O在線段PE上時,PE=OP+OE=2+2,即線段PE的最大值為2+2

詳解:如圖,連接ACBD交于點(diǎn)O,連接POEO,

∵∠AED=45°,∠ACD=45°,

ACE,D四點(diǎn)共圓,

正方形ABCD的邊長為4,

OE=OD=BD=2,

PAB的中點(diǎn),OBD的中點(diǎn),

OP=AD=2,

PEOP+OE=2+2,

當(dāng)點(diǎn)O在線段PE上時,PE=OP+OE=2+2,

即線段PE的最大值為2+2,

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形中,對角線相交于點(diǎn),,動點(diǎn)從點(diǎn)出發(fā),沿線段的速度向點(diǎn)運(yùn)動,同時動點(diǎn)從點(diǎn)出發(fā),沿線段的速度向點(diǎn)運(yùn)動,當(dāng)其中一個動點(diǎn)停止運(yùn)動時另一個動點(diǎn)也隨之停止.設(shè)運(yùn)動時間為,以點(diǎn)為圓心,為半徑的與射線,線段分別交于點(diǎn),連接.

(1)求的長(用含有的代數(shù)式表示),并求出的取值范圍;

(2)當(dāng)為何值時,線段相切?

(3)若與線段只有一個公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有正方形ABCD和一個以O(shè)為直角頂點(diǎn)的三角板,移動三角板,使三角板的兩直角邊所在直線分別與直線BC,CD交于點(diǎn)M,N.

(1如圖1,若點(diǎn)O與點(diǎn)A重合,則OM與ON的數(shù)量關(guān)系是__________________;

(2如圖2,若點(diǎn)O正方形的中心(即兩對角線的交點(diǎn),則(1中的結(jié)論是否仍然成立?請說明理由;

(3如圖3,若點(diǎn)O在正方形的內(nèi)部(含邊界,當(dāng)OM=ON時,請?zhí)骄奎c(diǎn)O在移動過程中可形成什么圖形?

(4如圖4是點(diǎn)O在正方形外部的一種情況.當(dāng)OM=ON時,請你就“點(diǎn)O的位置在各種情況下(含外部移動所形成的圖形”提出一個正確的結(jié)論.(不必說理

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)請根據(jù)下列計(jì)算,把解題過程補(bǔ)充完整,并把解題過程中用到的運(yùn)算律寫在題后的橫線上:

解:原式

.

運(yùn)算律: .

解:原式

運(yùn)算律:

2)計(jì)算下列各題:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC10BC12,矩形DEFG中,EF4FG12

1)如圖①,點(diǎn)AFG的中點(diǎn),FGBC,將矩形DEFG向下平移,直到DEBC重合為止.要研究矩形DEFGABC重疊部分的面積,就要進(jìn)行分類討論,你認(rèn)為如何進(jìn)行分類,寫出你的分類方法(無需求重疊部分的面積).

2)如圖②,點(diǎn)BF重合,EB、C在同一直線上,將矩形DEFG向右平移,直到點(diǎn)EC重合為止.設(shè)矩形DEFGABC重疊部分的面積為y,平移的距離為x

yx的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

在給定的平面直角坐標(biāo)系中畫出yx的大致圖象,并在圖象上標(biāo)注出關(guān)鍵點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,拋物線y=﹣x2+bx+C經(jīng)過點(diǎn)B(0,3)和點(diǎn)A(3,0)

(1)求該拋物線的函數(shù)表達(dá)式和直線AB的函數(shù)表達(dá)式;

(2)若直線lx軸,在第一象限內(nèi)與拋物線交于點(diǎn)M,與直線AB交于點(diǎn)N,請?jiān)趥溆脠D上畫出符合題意的圖形,并求點(diǎn)M與點(diǎn)N之間的距離的最大值或最小值,以及此時點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC矩形,點(diǎn)A、C的坐標(biāo)分別為、,點(diǎn)DOA的中點(diǎn),點(diǎn)PBC邊上運(yùn)動,當(dāng)是等腰三角形時,點(diǎn)Р的坐標(biāo)為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如圖1,點(diǎn)把線段分割成,若以為邊的三角形是一個直角三角形,則稱是線段的勾股點(diǎn)。

(1)已知點(diǎn)是線段的勾股點(diǎn),若,的長。

(1) (圖2) (圖3)

(2)如圖2,點(diǎn)是反比例函數(shù)上的動點(diǎn),直線與坐標(biāo)軸分別交與兩點(diǎn),過點(diǎn)分別向軸作垂線,垂足為,且交線段。試證明:是線段的勾股點(diǎn)。

(3)如圖3,已知一次函數(shù)與坐標(biāo)軸交與兩點(diǎn),與二次函數(shù)交與兩點(diǎn),若是線段的勾股點(diǎn),求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC5AF平分∠DAE,EFAE,求CF的長.

查看答案和解析>>

同步練習(xí)冊答案