【題目】在下面的解題過程的橫線上填空,并在括號(hào)內(nèi)注明理由

.如圖,已知A=F,C=D,試說明BDCE.

解:∵∠A=F(已知)

ACDF( )

∴∠D= ( )

∵∠C=D(已知)

∴∠1=C(等量代換)

BDCE( )

【答案】∵∠A=F(已知)

ACDF( 內(nèi)錯(cuò)角相等,兩直線平行 ) ……(2’)

∴∠D= 1 (兩直線平行,內(nèi)錯(cuò)角相等) ……(5’)

∵∠C=D(已知)

∴∠1=C(等量代換)

BDCE(同位角相等,兩直線平行 )…….(7’)

【解析】根據(jù)平行線的判定定理(同位角相等,兩條直線平行;內(nèi)錯(cuò)角相等,兩條直線平行)和平行線的性質(zhì)(同位角相等,兩直線平行;內(nèi)錯(cuò)角相等,兩直線平行)來填空

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AC=BCC=90°,點(diǎn)DAB的中點(diǎn).

1)如圖1,若點(diǎn)E、F分別是AC、BC上的點(diǎn),且AE=CF,請(qǐng)判別DEF的形狀,并說明理由;

2)若點(diǎn)EF分別是CA、BC延長(zhǎng)線上的點(diǎn),且AE=CF,則(1)中的結(jié)論是否仍然成立?請(qǐng)

說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若上升15米記作+15米,則下降12米記作________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長(zhǎng)線、DC的延長(zhǎng)線于點(diǎn)G,H,交BD于點(diǎn)O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°

(1)請(qǐng)判斷ABCD的位置關(guān)系并說明理由;

(2)如圖2,在(1)的結(jié)論下,當(dāng)∠E=90°保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=∠ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE∠MCD是否存在確定的數(shù)量關(guān)系?

(3)如圖3,在(1)的結(jié)論下,P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn),當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+∠CQP∠BAC有何數(shù)量關(guān)系? (2、3小題只需選一題說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一張矩形紙片,剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第一次操作;在剩下的矩形紙片中再剪下一個(gè)正方形,剩下一個(gè)矩形,稱為第二次操作;;若在第n次操作后,剩下的矩形為正方形,則稱原矩形為n階奇異矩形.

1)如圖1,矩形ABCD中,若AB=3BC=9,則稱矩形ABCD  階奇異矩形.

2)如圖2,矩形ABCD長(zhǎng)為7,寬為3,它是奇異矩形嗎?如果是,請(qǐng)寫出它是幾階奇異矩形,并在圖中畫出裁剪線;如果不是,請(qǐng)說明理由.

3)已知矩形ABCD的一邊長(zhǎng)為20,另一邊長(zhǎng)為aa20),且它是3階奇異矩形,請(qǐng)畫出矩形ABCD及裁剪線的示意圖,并在圖的下方直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是(  )

A.2a+3b=5abB.2a2+3a2=5a4

C.2a2b+3a2b=5a2bD.2a23a2=a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】m22m+1=0,則代數(shù)式2m24m+2019的值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=45°, ,等腰直角△DAE中,∠DAE=90°,且點(diǎn)D是邊BC上一點(diǎn)。

(1)求AC的長(zhǎng);

(2)如圖1,當(dāng)點(diǎn)E恰在AC上時(shí),求點(diǎn)E到BC的距離;

(3)如圖2, 當(dāng)點(diǎn)D從點(diǎn)B向點(diǎn)C運(yùn)動(dòng)時(shí),求點(diǎn)E到BC的距離的最大值。

圖1 圖2

查看答案和解析>>

同步練習(xí)冊(cè)答案