【題目】有理數(shù)a、bc在數(shù)軸上的位置如圖所示.

1)化簡:|a|   |b|   ;

2)比較大小ac   0,a+b   0

3)將ab,c,﹣a,﹣b,﹣c按從小到大的順序,用“<”號連接.

【答案】1|a|a|b|=﹣b;(2)>,<;(3cb<﹣aa<﹣b<﹣c

【解析】

1)首先確定ab的范圍,再根據(jù)絕對值的性質(zhì)化簡即可得出答案;

2)根據(jù)a、bc的范圍判斷即可得到結(jié)論;

3)利用數(shù)軸判定大小即可得出答案.

解:∵cb0a|c||b||a|

∴(1|a|a,|b|=﹣b;

2ac0,a+b0

3)將a,bc,﹣a,﹣b,﹣c按從小到大的順序排列為:cb<﹣aa<﹣b<﹣c,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若反比例函數(shù)與一次函數(shù)的圖象都經(jīng)過點A,2

1)求點A的坐標(biāo);

2)求一次函數(shù)的解析式;

3)設(shè)O為坐標(biāo)原點,若兩個函數(shù)圖像的另一個交點為B,求AOB的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c+2的圖象如圖所示,頂點為(﹣1,0),下列結(jié)論:①abc0;②b2﹣4ac=0;③a2;④4a﹣2b+c0.其中正確結(jié)論的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰三角形ABC中,AB=AC,點D,E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點F.

(1)求證:∠ABE=∠ACD;

(2)求證:過點AF的直線垂直平分線段BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】進價為每件40元的某商品,售價為每件50元時,每星期可賣出500件,市場調(diào)查反映:如果每件的售價每降價1元,每星期可多賣出100件,但售價不能低于每件42元,且每星期至少要銷售800件.設(shè)每件降價xx為正整數(shù)),每星期的利潤為y元.

1)求yx的函數(shù)關(guān)系式并寫出自變量x的取值范圍;

2)若某星期的利潤為5600元,此利潤是否是該星期的最大利潤?說明理由.

3)直接寫出售價為多少時,每星期的利潤不低于5000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx的圖象過點 (2,0),(-1,6).

(1)求二次函數(shù)的關(guān)系式;

(2)寫出它的對稱軸和頂點坐標(biāo);

(3)請說明x在什么范圍內(nèi)取值時,函數(shù)值y<0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體(看成一點)的路線是拋物線的一部分,如圖

(1)求演員彈跳離地面的最大高度;

(2)已知人梯高BC=3.4米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC內(nèi)接于O,BC是直徑,O的切線PACB的延長線于點P,OEACAB于點F,PA于點E,連接BE

1)判斷BEO的位置關(guān)系并說明理由;

2)若O的半徑為4,BE=3,AB的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點坐標(biāo)分別為A(﹣1,1)、B0,﹣2)、C1,0),點P0,2)繞點A旋轉(zhuǎn)180°得到點,點繞點B旋轉(zhuǎn)180°得到點,點繞點C旋轉(zhuǎn)180°得到點,點繞點A旋轉(zhuǎn)180°得到點,…,按此作法進行下去,則點的坐標(biāo)為( )

A.04B.(﹣2,0C.2,﹣4D.(﹣2,﹣2

查看答案和解析>>

同步練習(xí)冊答案