【題目】如圖1是一個(gè)長(zhǎng)為4a、寬為b的長(zhǎng)方形,沿圖中虛線用剪刀平均分成四塊小長(zhǎng)方形,然后用四塊小長(zhǎng)方形拼成的一個(gè)“回形”正方形(如圖2).
(1)圖②中的陰影部分的面積為;
(2)觀察圖②請(qǐng)你寫出 (a+b)2 , (a﹣b)2 , ab之間的等量關(guān)系是;
(3)根據(jù)(2)中的結(jié)論,若x+y=4,xy= ,則(x﹣y)2=;
(4)實(shí)際上通過計(jì)算圖形的面積可以探求相應(yīng)的等式.如圖③,你發(fā)現(xiàn)的等式是

【答案】
(1)(b﹣a)2
(2)(a+b)2﹣(a﹣b)2=4ab
(3)7
(4)(a+b)?(3a+b)=3a2+4ab+b2
【解析】解:(1)陰影部分為邊長(zhǎng)為(b﹣a)的正方形,所以陰影部分的面積(b﹣a)2 , 故答案為:(b﹣a)2;(2)圖2中,用邊長(zhǎng)為a+b的正方形的面積減去邊長(zhǎng)為b﹣a的正方形等于4個(gè)長(zhǎng)寬分別a、b的矩形面積,
所以(a+b)2﹣(a﹣b)2=4ab,
故答案為:(a+b)2﹣(a﹣b)2=4ab; (3)∵(x+y)2﹣(x﹣y)2=4xy,
而x+y=4,xy= ,
∴42﹣(x﹣y)2=4× ,
∴(x﹣y)2=7,
故答案為:7; (4)邊長(zhǎng)為(a+b)與(3a+b)的矩形面積為(a+b)(3a+b),它由3個(gè)邊長(zhǎng)為a的正方形、4個(gè)邊長(zhǎng)為a、b的矩形和一個(gè)邊長(zhǎng)為b的正方形組成,
∴(a+b)(3a+b)=3a2+4ab+b2
故答案為:(a+b)(3a+b)=3a2+4ab+b2
(1)陰影部分為邊長(zhǎng)為(b﹣a)的正方形,然后根據(jù)正方形的面積公式求解;(2)在圖2中,大正方形有小正方形和4個(gè)矩形組成,則(a+b)2﹣(a﹣b)2=4ab;(3)由(2)的結(jié)論得到(x+y)2﹣(x﹣y)2=4xy,再把x+y=4,xy= 得到(x﹣y)2=7;(4)觀察圖形得到邊長(zhǎng)為(a+b)與(3a+b)的矩形由3個(gè)邊長(zhǎng)為a的正方形、4個(gè)邊長(zhǎng)為a、b的矩形和一個(gè)邊長(zhǎng)為b的正方形組成,則有(a+b)(3a+b)=3a2+4ab+b2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角尺如圖放置,已知AE∥BC,求∠AFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年11月的最后一個(gè)星期四是感恩節(jié),小龍調(diào)查了初三年級(jí)部分同學(xué)在感恩節(jié)當(dāng)天將以何種方式表達(dá)感謝幫助過自己的人.他將調(diào)查結(jié)果分為如下四類:A類﹣﹣當(dāng)面致謝;B類﹣﹣打電話;C類﹣﹣發(fā)短信息或微信;D類﹣﹣寫書信.他將調(diào)查結(jié)果繪制成如圖不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)圖中提供的信息完成下列各題:

1)補(bǔ)全條形統(tǒng)計(jì)圖;

2)在A類的同學(xué)中,有3人來自同一班級(jí),其中有1人學(xué)過主持.現(xiàn)準(zhǔn)備從他們3人中隨機(jī)抽出兩位同學(xué)主持感恩節(jié)主題班會(huì)課,請(qǐng)你用樹狀圖或表格求出抽出的兩人都沒有學(xué)過主持的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果上升8℃記作+8℃,那么﹣5℃表示( 。

A. 上升5℃ B. 下降5℃ C. 上升3℃ D. 下降3℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)軸上點(diǎn)A表示的數(shù)是1,則與點(diǎn)A距離為2的點(diǎn)所表示的數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果tanα=0.213,那么銳角α的度數(shù)大約為( 。
A.8°
B.10°
C.12°
D.6°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正確的結(jié)論有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次青年歌手演唱比賽中,10位評(píng)委給某位歌手的打分分別是:9.5,9.89.4,9.59.6,9.3,9.6,9.49.3,9.4,則這組數(shù)據(jù)的眾數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,兩個(gè)等邊△ABD,△CBD的邊長(zhǎng)均為2,將△ABD沿AC方向向右平移k個(gè)單位到△A′B′D′的位置,得到圖2,則下列說法:①陰影部分的周長(zhǎng)為4;②當(dāng)k=1時(shí),圖中陰影部分為正六邊形;③若陰影部分和空白部分的面積相等,則k= . 其中正確的說法是( 。

A.①
B.①②
C.②③
D.①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案