【題目】(1)(方法回顧)證明:三角形中位線定理.
已知:如圖1,中,D、E分別是AB、AC的中點.
求證:,.
證明:如圖1,延長DE到點F,使得,連接CF;
請繼續(xù)完成證明過程;
(2)(問題解決)
如圖2,在矩形ABCD中,E為AD的中點,G、F分別為AB、CD邊上的點,若,,,求GF的長.
(3)(思維拓展)
如圖3,在梯形ABCD中,,,,E為AD的中點,G、F分別為AB、CD邊上的點,若,,,求GF的長.
【答案】(1)詳見解析;(2);(3).
【解析】
(1)用“倍長法”將DE延長一倍:延長DE到F,使得EF=DE,利用“邊角邊”證明△ADE和△CEF全等,根據(jù)全等三角形對應(yīng)邊相等可得AD=CF,然后判斷出四邊形BCFD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得;
(2)先判斷出△AEG≌△DEH(ASA),進而判斷出EF垂直平分GH,即可得出結(jié)論;
(3)如圖3,作輔助線構(gòu)建全等三角形,先求出AG=HD=2,進而判斷出△PDH為30度的直角三角形,再用勾股定理求出HF即可得出結(jié)論.
(1)證明:(1)如圖1,延長DE到點F,使得EF=DE,連接CF,
在△ADE和△CFE中,
,
∴△ADE≌△CFE(SAS),
∴∠A=∠ECF,AD=CF,
∴CF∥AB,
又∵AD=BD,
∴CF=BD,
∴四邊形BCFD是平行四邊形,
∴DE∥BC,DE=BC.
(2)如圖2,延長GE、FD交于點H,
∵E為AD中點,
∴EA=ED,且∠A=∠EDH=90°,
在△AEG和△DEH中,
,
∴△AEG≌△DEH(ASA),
∴AG=HD=3,EG=EH,
∵∠GEF=90°,
∴EF垂直平分GH,
∴GF=HF=DH+DF=3+7=10;
(3)解:如圖3,過點D作AB的平行線交GE的延長線于點H,過H作CD的垂線,垂足為P,連接HF,
同(1)可知△AEG≌△DEH,GF=HF,
∴∠A=∠HDE=90°,AG=HD=2
∵∠ADC=120°,
∴∠HDF=360°90°120°=150°,
∴∠HDP=30°,
∴PH=DH=,PD=3,
∴PF=PD+DF=3+4=7
在Rt△HFP中,∠HPF=90°,HP=,PF=7,
∴HF==
∴GF=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動點在平面直角坐標系中按圖中箭頭所示方向運動,第次從原點運動到點,第次接著運動到點,第次接著運動到點,按這樣的運動規(guī)律,經(jīng)過第次運動后,動點的坐標是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動適應(yīng)社會,促進書本知識和生活經(jīng)驗的深度融合,我市某中學(xué)決定組織部分班級去赤壁開展研學(xué)旅行活動,在參加此次活動的師生中,若每位老師帶17個學(xué)生,還剩12個學(xué)生沒人帶;若每位老師帶18個學(xué)生,就有一位老師少帶4個學(xué)生.現(xiàn)有甲、乙兩種大客車,它們的載客量和租金如表所示.
甲種客車 | 乙種客車 | |
載客量/(人/輛) | 30 | 42 |
租金/(元/輛) | 300 | 400 |
學(xué)校計劃此次研學(xué)旅行活動的租車總費用不超過3100元,為了安全,每輛客車上至少要有2名老師.
(1)參加此次研學(xué)旅行活動的老師和學(xué)生各有多少人?
(2)既要保證所有師生都有車坐,又要保證每輛客車上至少要有2名老師,可知租用客車總數(shù)為 輛;
(3)你能得出哪幾種不同的租車方案?其中哪種租車方案最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于實數(shù)a,b,我們可以用min{a,b}表示a,b兩數(shù)中較小的數(shù),例如min{3,-1}=-1,min{2,2}=2. 類似地,若函數(shù)y1、y2都是x的函數(shù),則y=min{y1, y2}表示函數(shù)y1和y2的“取小函數(shù)”.
(1)設(shè)y1=x,y2=,則函數(shù)y=min{x, }的圖像應(yīng)該是 中的實線部分.
(2)請在下圖中用粗實線描出函數(shù)y=min{(x-2)2, (x+2)2}的圖像,并寫出該圖像的三條不同性質(zhì):
① ;
② ;
③ ;
(3)函數(shù)y=min{(x-4)2, (x+2)2}的圖像關(guān)于 對稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快遞公司準備購買機器人來代替人工分揀已知購買- 臺甲型機器人比購買-臺乙型機器人多萬元;購買臺甲型機器人和臺乙型機器人共需萬元.
(1)求甲、乙兩種型號的機器人每臺的價格各是多少萬元;
(2)已知甲型、乙型機器人每臺每小時分揀快遞分別是件、件,該公司計劃最多用萬元購買臺這兩種型號的機器人.該公司該如何購買,才能使得每小時的分揀量最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且表示數(shù)a的點、數(shù)b的點與原點的距離相等.
(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;
(2)|b-1|+|a-1|=________;
(3)化簡:|a+b|+|a-c|-|b|+|b-c|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AO⊥BC,垂足為點O,⊙O與AC相切于點D,BE⊥AB交AC的延長線于點E,與⊙O相交于G、F兩點.
(1)求證:AB與⊙O相切;
(2)若等邊三角形ABC的邊長是8,求線段BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,射線分別和直線交于點,射線分別和直線交于點.點在上(點與三點不重合).連接.請你根據(jù)題意畫出圖形并用等式直接寫出、、之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校有A、B兩個閱覽室,甲、乙、丙三名學(xué)生各自隨機選擇其中的一個閱覽室閱讀.
(1)下列事件中,是必然事件的為( )
A.甲、乙同學(xué)都在A閱覽室 B.甲、乙、丙同學(xué)中至少兩人在A閱覽室
C.甲、乙同學(xué)在同一閱覽室 D.甲、乙、丙同學(xué)中至少兩人在同一閱覽室
(2)用畫樹狀圖的方法求甲、乙、丙三名學(xué)生在同一閱覽室閱讀的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com