【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

1(3x+2)225

23x214x

3(2x+1)23(2x+1)

4x27x80

【答案】1x1x=﹣;(2x;(3x=﹣0.5x1;(4x8x=﹣1

【解析】

1)利用直接開平方法求解可得;

2)利用公式法求解可得;

3)利用因式分解法求解可得;

4)利用因式分解法求解可得.

解:(1)∵(3x+2225

3x+253x+2=﹣5,

解得x1x=﹣

2)∵3x24x10,

a3,b=﹣4,c=﹣1

則△=(﹣424×3×(﹣1)=280,

x;

3)∵(2x+1232x+1)=0

∴(2x+1)(2x2)=0,

2x+102x20

解得x=﹣0.5x1;

4)∵x27x80,

∴(x8)(x+1)=0,

x80x+10,

解得x8x=﹣1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖中,,P是斜邊AC上一個(gè)動(dòng)點(diǎn),以即為直徑作BC于點(diǎn)D,與AC的另一個(gè)交點(diǎn)E,連接DE

1)當(dāng)時(shí),

①若,求的度數(shù);

②求證;

2)當(dāng),時(shí),

①是含存在點(diǎn)P,使得是等腰三角形,若存在求出所有符合條件的CP的長(zhǎng);

②以D為端點(diǎn)過P作射線DH,作點(diǎn)O關(guān)于DE的對(duì)稱點(diǎn)Q恰好落在內(nèi),則CP的取值范圍為________.(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是某小區(qū)入口實(shí)景圖,圖2是該入口抽象成的平面示意圖.已知入口BC3.9米,門衛(wèi)室外墻AB上的O點(diǎn)處裝有一盞路燈,點(diǎn)O與地面BC的距離為3.3米,燈臂OM長(zhǎng)為1.2米(燈罩長(zhǎng)度忽略不計(jì)),∠AOM60°.

1)求點(diǎn)M到地面的距離;

2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進(jìn)入時(shí),貨車需與護(hù)欄CD保持0.65米的安全距離,此時(shí),貨車能否安全通過?若能,請(qǐng)通過計(jì)算說明;若不能,請(qǐng)說明理由.(參考數(shù)據(jù):1.73,結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y+1的圖象與性質(zhì)進(jìn)行了探究.下面是小明的探究過程,請(qǐng)補(bǔ)充完整:

1)函數(shù)y+1的自變量x的取值范圍是   ;

2)下表列出了yx的幾組對(duì)應(yīng)值,請(qǐng)寫出m,n的值:m   ,n   ;

x

1

0

2

3

y

m

0

1

n

2

3)在如圖所示的平面直角坐標(biāo)系中,描全上表中以各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),并畫出該函數(shù)的圖象.

4)結(jié)合函數(shù)的圖象,解決問題:

①寫出該函數(shù)的一條性質(zhì):   

②當(dāng)函數(shù)值+1時(shí),x的取值范圍是:   

③方程+1x的解為:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為數(shù)學(xué)實(shí)驗(yàn)“先行示范!保粩(shù)學(xué)活動(dòng)小組帶上高度為1.5m的測(cè)角儀BC,對(duì)建筑物AO進(jìn)行測(cè)量高度的綜合實(shí)踐活動(dòng),如圖,在BC處測(cè)得直立于地面的AO頂點(diǎn)A的仰角為30°,然后前進(jìn)40mDE處,測(cè)得頂點(diǎn)A的仰角為75°.

1)求∠CAE的度數(shù);

2)求AE的長(zhǎng)(結(jié)果保留根號(hào));

3)求建筑物AO的高度(精確到個(gè)位,參考數(shù)據(jù):,.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,AC12cm,BC16cmD、E分別是AC、AB的中點(diǎn),連接DE.點(diǎn)P從點(diǎn)D出發(fā),沿DE方向勻速運(yùn)動(dòng),速度為2cm/s;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿BA方向勻速運(yùn)動(dòng),速度為4cm/s,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t0t4s.解答下列問題:

1)當(dāng)t為何值時(shí),以點(diǎn)E、P、Q為頂點(diǎn)的三角形與△ADE相似?

2)當(dāng)t為何值時(shí),△EPQ為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是矩形內(nèi)的任意一點(diǎn),連接、, 得到 , , , ,設(shè)它們的面積分別是,,, 給出如下結(jié)論:③若,則④若,則點(diǎn)在矩形的對(duì)角線上.其中正確的結(jié)論的序號(hào)是(

A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的口袋中有4個(gè)大小、質(zhì)地完全相同的乒乓球,球面上分別標(biāo)有數(shù)-12,-3,4

1)搖勻后任意摸出1個(gè)球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率為________

2)搖勻后先從中任意摸出1個(gè)球(不放回),再?gòu)挠嘞碌?/span>3個(gè)球中任意摸出1個(gè)球,用列表或畫樹狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的部分對(duì)應(yīng)值如表:

下列結(jié)論:拋物線的開口向上;②拋物線的對(duì)稱軸為直線;③當(dāng)時(shí),;④拋物線與軸的兩個(gè)交點(diǎn)間的距離是;⑤若是拋物線上兩點(diǎn),則,其中正確的個(gè)數(shù)是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案