【題目】半期考試來臨,元元到文具店購買考試用的鉛筆,簽字筆和鋼筆,其中鉛筆每支8元,簽字筆每支l0元,鋼筆每支20元,若他一共用了122元,那么他最多能買鋼筆_______支.

【答案】4

【解析】

設購買x支鋼筆,y支鉛筆,z支簽字筆,根據(jù)他一共用了122元,列出方程,將x用含yz的式子表示出來,分別對yz取值驗證,即可得解.

設購買x支鋼筆,y支鉛筆,z支簽字筆,
依題意,得:20x+8y+10z=122
x=
由題意可知xy,z均為正整數(shù)
∴當y=1z=1時,x=5.2,不符合題意;
y=2z=1時,x=4.8,不符合題意;
y=3,z=1時,x=4.4,不符合題意;
y=2z=2時,由奇偶性可知,分子為奇數(shù),不符合題意;
y=4,z=1時,x=4,符合題意.
故答案為:4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=3x與雙曲線y= k0,且x0)交于點A,點A的橫坐標是1

1)求點A的坐標及雙曲線的解析式;

2)點B是雙曲線上一點,且點B的縱坐標是1,連接OB,AB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,點O在斜邊AB上,以O為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結AD.已知∠CAD=B.

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點D為直角三角形ABC的斜邊AB上的中點,DEABACE, EBCD,線段CDBF交于點F.tanA=,=_____.如圖2,點D為直角三角形ABC的斜邊AB上的一點,DEABACE, EBCD;線段CDBF交于點F.,tanA=,則=____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形①、②在直線上,正方形③如圖放置,若正方形①、②的邊長分別為,則正方形③的邊長為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖放置的兩個正方形,大正方形ABCD邊長為a,小正方形CEFG邊長為b(ab),M在邊BC上,且BM=b,連AMMF,MFCG于點P,將ABM繞點A旋轉至ADN,將MEF繞點F旋轉至NGF。給出以下五種結論:MAD=AND;CP= ;ΔABMΔNGFS四邊形AMFN=a2+b2;A,M,P,D四點共線

其中正確的個數(shù)是(

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸,軸分別交于,兩點,若將直線向右平移個單位得到直線,軸,軸分別交于,兩點.

1)求點的坐標;

2)如圖1,若點是直線上一動點,且,軸,連接,求的最小值及此時點的坐標;

3)如圖2,將線段繞點順時針旋轉,得到線段,延長線段得到直線,線段在直線上移動,當以點、、構成的三角形是等腰三角形時,直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=的圖象如圖,點A0位于坐標原點,點A1,A2,A3…Any軸的正半軸上,點B1B2,B3…Bn在二次函數(shù)位于第一象限的圖象上,點C1,C2C3…Cn在二次函數(shù)位于第二象限的圖象上,四邊形A0B1A1C1,四邊形A1B2A2C2,四邊形A2B3A3C3四邊形An1BnAnCn都是菱形,A0B1A1=A1B2A1=A2B3A3…=An1BnAn

=60°,菱形An1BnAnCn的周長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,,點邊上,相交于點

1)求證:;

2)若,求的度數(shù).

查看答案和解析>>

同步練習冊答案