如圖,A、B是雙曲線y=
k
x
(k>0)
上的點(diǎn),A、B兩點(diǎn)的橫坐標(biāo)分別是a、3a,線段AB的延長線交x軸于點(diǎn)C,若S△AOC=6,則k的值為( 。
A.2B.3C.4D.6

分別過點(diǎn)A、B作AF⊥y軸于點(diǎn)F,AD⊥x軸于點(diǎn)D,BG⊥y軸于點(diǎn)G,BE⊥x軸于點(diǎn)E,
∵k>0,點(diǎn)A是反比例函數(shù)圖象上的點(diǎn),
∴S△AOD=S△AOF=
|k|
2
,
∵A、B兩點(diǎn)的橫坐標(biāo)分別是a、3a,
∴AD=3BE,
∴點(diǎn)B是AC的三等分點(diǎn),
∴DE=2a,CE=a,
∴S△AOC=S梯形ACOF-S△AOF=
1
2
(OE+CE+AF)×OF-
|k|
2
=
1
2
×5a×
|k|
a
-
|k|
2
=6,解得k=3.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,Rt△AOB的頂點(diǎn)A(a,b)是一次函數(shù)y=2x+m-4的圖象與反比例函數(shù)y=
m
x
的圖象在第一象限內(nèi)的交點(diǎn),△AOB的面積為2.求:
(1)一次函數(shù)和反比例函數(shù)的解析式;
(2)這兩個(gè)函數(shù)圖象交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知反比例函數(shù)y=
k
2x
和一次函數(shù)y=2x-1,其中一次函數(shù)的圖象經(jīng)過(a,b),(a+1,b+k)兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)如圖,已知點(diǎn)A在第一象限,且同時(shí)在上述兩個(gè)函數(shù)的圖象上,求點(diǎn)A的坐標(biāo);
(3)利用(2)的結(jié)果,請問:在x軸上是否存在點(diǎn)P,使△AOP為等腰三角形?若存在,把符合條件的P點(diǎn)坐標(biāo)都求出來;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,y=kx+b的圖象與反比例函數(shù)y=
m
x
的圖象相交于A、B兩點(diǎn),
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍;
(3)連接OA、OB,計(jì)算△OAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線y=
k
x
部分圖象如圖所示,S△OAB=2,則k=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,直線y=-x+b與雙曲線y=
1
x
(x>0)交于A、B兩點(diǎn),與x軸、y軸分別交于E、F兩點(diǎn),連接OA、OB,若S△AOB=S△OBF+S△OAE.則:①S△OBF+S△OAE=______S△OEF;②b=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若ab>0,則一次函數(shù)y=ax+b與反比例函數(shù)y=
ab
x
在同一坐標(biāo)系數(shù)中的大致圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=ax-a與y=
a
x
(a≠0)在同一直角坐標(biāo)系中的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一次函數(shù)y1=k1x+b與反函數(shù)y2=
k2
x
的圖象在平面直角坐標(biāo)系中的位置如圖所示.當(dāng)x=-
1
2
時(shí),y1與y2的大小關(guān)系是y1______y2.(填“>”、“<”或“=”)

查看答案和解析>>

同步練習(xí)冊答案