【題目】如圖1,在一張長(zhǎng)方形紙條上畫(huà)一條數(shù)軸.
(1)若折疊紙條使數(shù)軸上表示﹣1的點(diǎn)與表示5的點(diǎn)重合,則折痕與數(shù)軸的交點(diǎn)表示的數(shù)是 ;
(2)如果數(shù)軸上兩點(diǎn)之間的距離為6+m2(m為常數(shù)),這兩點(diǎn)經(jīng)過(guò)(1)的折疊方式后折痕與數(shù)軸的交點(diǎn)與(1)中的交點(diǎn)相同,求左邊這個(gè)點(diǎn)表示的數(shù);(用含m的代數(shù)式表示)
(3)如圖2,若將此紙條沿A,B處剪開(kāi),將中間的一段紙條對(duì)折,使其左右兩端重合,這樣連續(xù)對(duì)折n次后,再將其展開(kāi),求最右端的折痕與數(shù)軸的交點(diǎn)表示的數(shù).(用含n的代數(shù)式表示)
【答案】(1)2;(2)﹣1﹣ ;(3) 4﹣
【解析】
(1)點(diǎn)﹣1與5是對(duì)稱的,交點(diǎn)為2;
(2)設(shè)兩個(gè)點(diǎn)左邊的為x,右邊的為y,y﹣x=6+m2,x+y=4,求出x即可;
(3)對(duì)折n次后,每?jī)蓷l相鄰折痕間的距離 =,最右端的折痕與數(shù)軸的交點(diǎn)表示的數(shù)為4﹣.
解:(1)由折疊時(shí),點(diǎn)﹣1與5是對(duì)稱的,
∴﹣1和5的中點(diǎn)為折痕與數(shù)軸的交點(diǎn),
∴交點(diǎn)為2,
故答案為2;
(2)設(shè)兩個(gè)點(diǎn)左邊的為x,右邊的為y,
∵兩點(diǎn)之間的距離為6+m2,
∴y﹣x=6+m2,
由(1)知交點(diǎn)為2,
∴x+y=4,
∴x=﹣1﹣,
∴左邊的這個(gè)點(diǎn)表示的數(shù)是﹣1﹣.
(3)對(duì)折n次后,每?jī)蓷l相鄰折痕間的距離 =,
∴最右端的折痕與數(shù)軸的交點(diǎn)表示的數(shù)為4﹣.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AC與弦BD相交于點(diǎn)F,點(diǎn)E是DB延長(zhǎng)線上的一點(diǎn),∠EAB=∠ADB.
(1)求證:EA是⊙O的切線;
(2)若點(diǎn)B是EF的中點(diǎn),AB=,CB=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖,,,平分,平分,求的度數(shù).
(2)如果(1)中,其他條件不變,求的度數(shù).
(3)如果(1)中其他條件不變,則的度數(shù)為 .(直接寫(xiě)出結(jié)果)
(4)從(1)、(2)、(3)的結(jié)果能看出的規(guī)律是:與有什么關(guān)系,與哪個(gè)角的大小無(wú)關(guān)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三角形ABC,D為AB邊上一點(diǎn).
(1) 過(guò)點(diǎn)D畫(huà)線段BC的平行線DE,交AC于點(diǎn)E;過(guò)點(diǎn)A畫(huà)線段BC的垂線AH,垂足為點(diǎn)H.
(2)用符號(hào)語(yǔ)言分別描述直線DE與線段BC及直線AH與線段BC的位置關(guān)系.
(3)比較大。壕段BH 線段BA,理由為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)A的坐標(biāo)為(4,3).
(1)頂點(diǎn)的坐標(biāo)為( , );
(2)現(xiàn)有動(dòng)點(diǎn)P、Q分別從C、A同時(shí)出發(fā),點(diǎn)P沿線段CB向終點(diǎn)B運(yùn)動(dòng),速度為每秒1個(gè)單位,點(diǎn)Q沿折線A→O→C向終點(diǎn)C運(yùn)動(dòng),速度為每秒k個(gè)單位,當(dāng)運(yùn)動(dòng)時(shí)間為2秒時(shí),以P、Q、C為頂點(diǎn)的三角形是等腰三角形,求此時(shí)k的值.
(3)若正方形OABC以每秒個(gè)單位的速度沿射線AO下滑,直至頂點(diǎn)C落到軸上時(shí)停止下
滑.設(shè)正方形OABC在軸下方部分的面積為S,求S關(guān)于滑行時(shí)間的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)自變量的取值范圍.
(備用圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為爭(zhēng)創(chuàng)全國(guó)文明衛(wèi)生城,2008年市政府對(duì)市區(qū)綠化工程投入的資金是2000萬(wàn)元,2010年投入的資金是2420萬(wàn)元,且從2008年到2010年,兩年間每年投入資金的年平均增長(zhǎng)率相同.
(1)求該市對(duì)市區(qū)綠化工程投入資金的年平均增長(zhǎng)率;
(2)若投入資金的年平均增長(zhǎng)率不變,那么該市在2012年需投入多少萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過(guò)上一點(diǎn)E作EG∥AC交CD的延長(zhǎng)線于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長(zhǎng)AB交GE的延長(zhǎng)線于點(diǎn)M,若tanG=,AH=3,求EM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,點(diǎn)E是邊CD的中點(diǎn),連接BE并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:四邊形BDFC是平行四邊形;
(2)若CB=CD,求四邊形BDFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)服裝部為了調(diào)動(dòng)營(yíng)業(yè)員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對(duì)營(yíng)業(yè)員進(jìn)行適當(dāng)?shù)莫?jiǎng)勵(lì).為了確定一個(gè)適當(dāng)?shù)脑落N售目標(biāo),商場(chǎng)服裝部統(tǒng)計(jì)了每位營(yíng)業(yè)員在某月的銷售額(單位:萬(wàn)元),數(shù)據(jù)如下:
17 | 18 | 16 | 13 | 24 | 15 | 28 | 26 | 18 | 19 |
22 | 17 | 16 | 19 | 32 | 30 | 16 | 14 | 15 | 26 |
15 | 32 | 23 | 17 | 15 | 15 | 28 | 28 | 16 | 19 |
對(duì)這30個(gè)數(shù)據(jù)按組距3進(jìn)行分組,并整理、描述和分析如下.
頻數(shù)分布表
組別 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
銷售額 | |||||||
頻數(shù) | 7 | 9 | 3 | 2 | 2 |
數(shù)據(jù)分析表
平均數(shù) | 眾數(shù) | 中位數(shù) |
20.3 | 18 |
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1)填空:a= ,b= ,c= ;
(2)若將月銷售額不低于25萬(wàn)元確定為銷售目標(biāo),則有 位營(yíng)業(yè)員獲得獎(jiǎng)勵(lì);
(3)若想讓一半左右的營(yíng)業(yè)員都能達(dá)到銷售目標(biāo),你認(rèn)為月銷售額定為多少合適?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com