【題目】如圖,已知AE=DB,BC=EF,AC=DF,
求證:
(1)AC∥DF;
(2)CB∥EF.
【答案】
(1)證明:∵AE=DB,∴AE-BE=DB-BE,
即AB=DE,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(SSS),
∴∠A=∠D,∠ABC=∠DEF,
∴AC∥DF
(2)證明:由(1)得:∠ABC=∠DEF,∴∠CBE=∠FEB,
∴CB∥EF
【解析】(1)由線段的和差和全等三角形的判定方法SSS,得到△ABC≌△DEF,由全等三角形的性質(zhì),得到∠A=∠D,再由內(nèi)錯(cuò)角相等,兩直線平行,得到AC∥DF;(2)由(1)得∠ABC=∠DEF,根據(jù)等角的補(bǔ)角相等,得到∠CBE=∠FEB,再由內(nèi)錯(cuò)角相等,兩直線平行,得到CB∥EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(﹣2,y1),B(2,y2)在拋物線y=﹣(x+1)2+m上,則y1_____y2(填“>”或“=”“<”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某一次函數(shù)的圖象與直線y=﹣x+1平行,且過點(diǎn)(8,2),那么此一次函數(shù)為( )
A. y=﹣x﹣2 B. y=﹣x+10 C. y=﹣x﹣6 D. y=﹣x﹣10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,多邊形的各頂點(diǎn)都在方格紙的格點(diǎn)(橫豎格子線的交錯(cuò)點(diǎn))上,這樣的多邊形稱為格點(diǎn)多邊形,它的面積S可用公式(a是多邊形內(nèi)的格點(diǎn)數(shù),b是多邊形邊界上的格點(diǎn)數(shù))計(jì)算,這個(gè)公式稱為“皮克定理”.現(xiàn)用一張方格紙共有200個(gè)格點(diǎn),畫有一個(gè)格點(diǎn)多邊形,它的面積S=40.
(1)這個(gè)格點(diǎn)多邊形邊界上的格點(diǎn)數(shù)b= (用含a的代數(shù)式表示).
(2)設(shè)該格點(diǎn)多邊形外的格點(diǎn)數(shù)為c,則c﹣a= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,點(diǎn)E,F(xiàn)分別在AB,CD上,連接EF,∠AEF、∠CFE的平分線交于點(diǎn)G,∠BEF、∠DFE的平分線交于點(diǎn)H.
(1)求證:四邊形EGFH是矩形;
(2)小明在完成(1)的證明后繼續(xù)進(jìn)行了探索,過G作MN∥EF,分別交AB,CD于點(diǎn)M,N,過H作PQ∥EF,分別交AB,CD于點(diǎn)P,Q,得到四邊形MNQP,此時(shí),他猜想四邊形MNQP是菱形,請(qǐng)?jiān)谙铝锌蛑醒a(bǔ)全他的證明思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P(a,b)在第二象限,則點(diǎn)M(b-a,a-b)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com