【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)是

【答案】120°
【解析】解:作A關(guān)于BC和CD的對(duì)稱(chēng)點(diǎn)A′,A″,連接A′A″,交BC于M,交CD于N,則A′A″即為△AMN的周長(zhǎng)最小值.作DA延長(zhǎng)線AH,
∵∠DAB=120°,
∴∠HAA′=60°,
∴∠AA′M+∠A″=∠HAA′=60°,
∵∠MA′A=∠MAA′,∠NAD=∠A″,
且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,
∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,
所以答案是:120°.

【考點(diǎn)精析】根據(jù)題目的已知條件,利用三角形的面積和三角形三邊關(guān)系的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握三角形的面積=1/2×底×高;三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣4,0)、B(1,0)、C(﹣2,6).

(1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線解析式;
(2)設(shè)直線BC交y軸于點(diǎn)E,連接AE,求證:AE=CE;
(3)設(shè)拋物線與y軸交于點(diǎn)D,連接AD交BC于點(diǎn)F,試問(wèn)以A、B、F為頂點(diǎn)的三角形與△ABC相似嗎?
(4)若點(diǎn)P為直線AE上一動(dòng)點(diǎn),當(dāng)CP+DP取最小值時(shí),求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某小區(qū)的一個(gè)健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點(diǎn)A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把邊長(zhǎng)為3的正方形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BC與D′C′交于點(diǎn)O,則四邊形ABOD′的周長(zhǎng)是(
A.
B.6
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)A,B兩種鋼筆,若購(gòu)進(jìn)A種鋼筆2支,B種鋼筆3支,共需90元;購(gòu)進(jìn)A種鋼筆3支,B種鋼筆5支,共需145元.
(1)求A、B兩種鋼筆每支各多少元?
(2)若該文具店要購(gòu)進(jìn)A,B兩種鋼筆共90支,總費(fèi)用不超過(guò)1588元,并且A種鋼筆的數(shù)量少于B種鋼筆的數(shù)量,那么該文具店有哪幾種購(gòu)買(mǎi)方案?
(3)文具店以每支30元的價(jià)格銷(xiāo)售B種鋼筆,很快銷(xiāo)售一空,于是,文具店決定在進(jìn)價(jià)不變的基礎(chǔ)上再購(gòu)進(jìn)一批B種鋼筆,漲價(jià)賣(mài)出,經(jīng)統(tǒng)計(jì),B種鋼筆售價(jià)為30元時(shí),每月可賣(mài)68支;每漲價(jià)1元,每月將少賣(mài)4支,設(shè)文具店將新購(gòu)進(jìn)的B種鋼筆每支漲價(jià)a元(a為正整數(shù)),銷(xiāo)售這批鋼筆每月獲利W元,試求W與a之間的函數(shù)關(guān)系式,并且求出B種鉛筆銷(xiāo)售單價(jià)定為多少元時(shí),每月獲利最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在綜合實(shí)踐課上,小聰所在小組要測(cè)量一條河的寬度,如圖,河岸EF∥MN,小聰在河岸MN上點(diǎn)A處用測(cè)角儀測(cè)得河對(duì)岸小樹(shù)C位于東北方向,然后沿河岸走了30米,到達(dá)B處,測(cè)得河對(duì)岸電線桿D位于北偏東30°方向,此時(shí),其他同學(xué)測(cè)得CD=10米.請(qǐng)根據(jù)這些數(shù)據(jù)求出河的寬度.(精確到0.1)(參考數(shù)據(jù): ≈1.414, ≈1.132)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=kx﹣2(k>0)與雙曲線 在第一象限內(nèi)的交點(diǎn)R,與x軸、y軸的交點(diǎn)分別為P、Q.過(guò)R作RM⊥x軸,M為垂足,若△OPQ與△PRM的面積相等,則k的值等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線經(jīng)過(guò)A(1,0)、B(0,3)兩點(diǎn),對(duì)稱(chēng)軸是x=﹣1
(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線段OM上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線段OB上運(yùn)動(dòng),過(guò)點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,直接寫(xiě)出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知E,F(xiàn),G,H分別為正方形ABCD各邊上的動(dòng)點(diǎn),且始終保持AE=BF=CG=DH,點(diǎn)M,N,P,Q分別是EH、EF、FG、HG的中點(diǎn).當(dāng)AE從小于BE的變化過(guò)程中,若正方形ABCD的周長(zhǎng)始終保持不變,則四邊形MNPQ的面積變化情況是(

A.一直增大
B.一直減小
C.先增大后減小
D.先減小后增大

查看答案和解析>>

同步練習(xí)冊(cè)答案