【題目】在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn),,均在格點(diǎn)上,點(diǎn),分別為線段,上的動(dòng)點(diǎn).
(I)如圖(1),當(dāng)點(diǎn),分別為,中點(diǎn)時(shí),的值為__________;
(Ⅱ)當(dāng)取得最小值時(shí),在如圖(2)所示的網(wǎng)格中,用無(wú)刻度的真尺,畫(huà)出線段,,簡(jiǎn)要說(shuō)明點(diǎn)和點(diǎn)的位置是如何找到的(不要求證明)__________.
【答案】 取格點(diǎn),, 連接交于點(diǎn),交于點(diǎn)
【解析】
(I)根據(jù)勾股定理求出PC、BC的長(zhǎng),再根據(jù)三角形的中位線定理求出PQ的長(zhǎng),即可解答;
(Ⅱ)連接EF交AB于點(diǎn)P,畫(huà)出圖形解答即可.
(I)如圖:連接BC
根據(jù)勾股定理可求得:PC=,
BC=,
∵,分別為,中點(diǎn),
∴
∴PC+PQ的值;
故答案為:;
(Ⅱ)如圖所示,取格點(diǎn)E,F,連接EF交AB于點(diǎn)P,交AC于點(diǎn)Q.
此時(shí),PC+PQ最短.(PC+PQ=PE+PQ,根據(jù)垂線段最短,可知當(dāng)EF⊥AC時(shí),PE+PQ最短),
故答案為:取格點(diǎn)E,F,連接EF交AB于點(diǎn)P,交AC于點(diǎn)Q
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的對(duì)稱(chēng)軸是直線且與軸相交于兩點(diǎn),與軸交于點(diǎn)點(diǎn)的坐標(biāo)為.
求拋物線的解析式;
若點(diǎn)是第一象限內(nèi)拋物線上一點(diǎn),過(guò)點(diǎn)作直線軸于點(diǎn)交直線于點(diǎn)當(dāng)時(shí),求四邊形的面積.
在的條件下,若點(diǎn)在拋物線上,點(diǎn)在拋物線的對(duì)稱(chēng)軸上,當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求出所有符合條件的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是⊙的直徑,是⊙的一條弦,,的延長(zhǎng)線交⊙于點(diǎn),交的延長(zhǎng)線于點(diǎn),連接,且恰好∥,連接交于點(diǎn),延長(zhǎng)交于點(diǎn),連接.
(1)求證:是⊙的切線;
(2)求證:點(diǎn)是的中點(diǎn);
(3)當(dāng)⊙的半徑為時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)D是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過(guò)點(diǎn)E作BC的平行線,分別交射線AB、AC于點(diǎn)F、G,連接BE.
(1)如圖(a)所示,當(dāng)點(diǎn)D在線段BC上時(shí).
①求證:△AEB≌△ADC;
②探究四邊形BCGE是怎樣特殊的四邊形?并說(shuō)明理由;
(2)如圖(b)所示,當(dāng)點(diǎn)D在BC的延長(zhǎng)線上時(shí),直接寫(xiě)出(1)中的兩個(gè)結(jié)論是否成立;
(3)在(2)的情況下,當(dāng)點(diǎn)D運(yùn)動(dòng)到什么位置時(shí),四邊形BCGE是菱形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=﹣x+c與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)B,拋物線y=﹣x2+bx+c經(jīng)過(guò)A、B兩點(diǎn).
(1)求拋物線表達(dá)式;
(2)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作垂直于x軸的直線分別交x軸和直線AB于M、N兩點(diǎn),若P、M、N三點(diǎn)中恰有一點(diǎn)是其他兩點(diǎn)所連線段的中點(diǎn)(三點(diǎn)重合除外),請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn),點(diǎn),點(diǎn)均落在格點(diǎn)上.
(1)_________.
(2)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出一個(gè)以為底邊的等腰,使該三角形的面積等于的面積,并簡(jiǎn)要說(shuō)明點(diǎn)的位置是如何找到的(不要求證明)__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l:y=-x,點(diǎn)A1坐標(biāo)為(-4,0).過(guò)點(diǎn)A1作x軸的垂線交直線l于點(diǎn)B1,以原點(diǎn)O為圓心,OB1長(zhǎng)為半徑畫(huà)弧交x軸負(fù)半軸于點(diǎn)A2,再過(guò)點(diǎn)A2作x軸的垂線交直線l于點(diǎn)B2,以原點(diǎn)O為圓心,OB2長(zhǎng)為半徑畫(huà)弧交x軸負(fù)半軸于點(diǎn)A3,…,按此做法進(jìn)行下去,點(diǎn)A2018的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和小亮分別從甲地和乙地同時(shí)出發(fā),沿同一條路相向而行,小明開(kāi)始跑步,中途改為步行,到達(dá)乙地恰好用小亮騎自行車(chē)以的速度直接到甲地,兩人離甲地的路程與各自離開(kāi)出發(fā)地的時(shí)間之間的函數(shù)圖象如圖所示,
甲、乙兩地之間的路程為______m,小明步行的速度為______;
求小亮離甲地的路程y關(guān)于x的函數(shù)表達(dá)式,并寫(xiě)出自變量x的取值范圍;
求兩人相遇的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:△ABC是⊙O的內(nèi)接三角形,BT為⊙O的切線,B為切點(diǎn),P為直線AB上一點(diǎn),過(guò)P作BC的平行線交直線BT于點(diǎn)E,交直線AC于點(diǎn)F.
(1)如圖 (1)所示,當(dāng)P在線段AB上時(shí),求證:PA·PB=PE·PF;
(2)如圖 (2)所示,當(dāng)P為線段BA延長(zhǎng)線上一點(diǎn)時(shí),第(1)題的結(jié)論還成立嗎?如果成立,請(qǐng)給出證明;如果不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com