【題目】如圖,,,C、B、D在同一條直線上.
(1)若,,連接,求的長(zhǎng).
(2)如圖設(shè)a、b、c是和的邊長(zhǎng),這時(shí)我們把關(guān)于x的形如的一元二次方程稱(chēng)為“勾股方程”.
①寫(xiě)出一個(gè)“勾股方程”;
②判斷關(guān)于x的“勾股方程”根的情況并說(shuō)明理由;
③若是“勾股方程”的一個(gè)根,且四邊形的周長(zhǎng)是,求的面積.
【答案】(1)(2)①②關(guān)于x的“勾股方程”必有實(shí)數(shù)根,理由見(jiàn)解析.③
【解析】
(1)由Rt△ABC≌Rt△BED,知BD=AC=1,DE=BC= ∠ABC=∠BED,∠BAC=∠EBD,再證AB=BE=,∠ABE=90°,利用勾股定理可得答案;
(2)①直接找一組勾股數(shù)代入方程即可;②通過(guò)判斷根的判別式△的正負(fù)來(lái)證明結(jié)論;③利用根的意義和勾股定理作為相等關(guān)系先求得c的值,根據(jù)完全平方公式求得ab的值,從而可求得面積.
解:(1)∵Rt△ABC≌Rt△BED,
∴BD=AC=1,DE=BC= ∠ABC=∠BED,∠BAC=∠EBD,
∴AB=BE=,
∵∠ABC+∠BAC=90°,
∴∠ABC+∠EBD=90°,
∴∠ABE=90°,
∴AE=
(2)①當(dāng)a=3,b=4,c=5時(shí),勾股方程為為
②關(guān)于x的“勾股方程”必有實(shí)數(shù)根,
理由如下:根據(jù)題意,得:
∵
∴
即△≥0,
∴勾股方程必有實(shí)數(shù)根;
③當(dāng)時(shí),有
即
∵四邊形的周長(zhǎng)是,
即
∴
∴c=3,
∴
∵
∴
∴=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰三角形ABC中,AB=AC,點(diǎn)D,E分別在邊AB、AC上,且AD=AE,連接BE、CD,交于點(diǎn)F.
(1)求證:∠ABE=∠ACD;
(2)求證:過(guò)點(diǎn)A、F的直線垂直平分線段BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的有( )
①Rt△ABC中,已知兩邊長(zhǎng)分別為3和4,則第三邊長(zhǎng)為5;
②有一個(gè)內(nèi)角等于其他兩個(gè)內(nèi)角和的三角形是直角三角形;
③三角形的三邊分別為a,b,C,若a2+c2=b2,那么∠C=90°;
④若△ABC中,∠A:∠B:∠C=1:5:6,則△ABC是直角三角形.
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在四邊形 ABCD 中,∠A=x°,∠C=y°.
(1) ∠ABC+∠ADC= °.(用含 x,y 的代數(shù)式表示)
(2) BE、DF 分別為∠ABC、∠ADC 的外角平分線,
①若 BE∥DF,x=30,則 y= ;
②當(dāng) y=2x 時(shí),若 BE 與 DF 交于點(diǎn) P,且∠DPB=20°,求 y 的值.
(3) 如圖②,∠ABC 的平分線與∠ADC 的外角平分線交于點(diǎn) Q,則∠Q= °.(用含 x,y 的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,一列快車(chē)從甲地駛往乙地,一列慢車(chē)從乙地駛往甲地,兩車(chē)同時(shí)出發(fā),設(shè)慢車(chē)行駛的時(shí)間為,兩車(chē)之間的距離為,圖中的折線表示與之間的關(guān)系,下列說(shuō)法中正確的個(gè)數(shù)為( ).①甲乙兩地相距;②段表示慢車(chē)先加速后減速最后到達(dá)甲地;③快車(chē)的速度為;④慢車(chē)的速度為;⑤快車(chē)到達(dá)乙地后,慢車(chē)到達(dá)甲地。
A. 個(gè)B. 個(gè)C. 個(gè)D. 個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文明,源遠(yuǎn)流長(zhǎng):中華詩(shī)詞,寓意深廣.為了傳承優(yōu)秀傳統(tǒng)文化,我市某校團(tuán)委組織了一次全校2000名學(xué)生參加的“中國(guó)詩(shī)詞大會(huì)”海選比賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次海選比賽的成績(jī)分布情況,隨機(jī)抽取了其中200名學(xué)生的海選比賽成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列統(tǒng)計(jì)圖表
組別 | 海選成績(jī)x |
A組 | 50≤x<60 |
B組 | 60≤x<70 |
C組 | 70≤x<80 |
D組 | 80≤x<90 |
E組 | 90≤x<100 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題
①圖1條形統(tǒng)計(jì)圖中D組人數(shù)有多少?
②在圖2的扇形統(tǒng)計(jì)圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角的度數(shù)為 度;
③規(guī)定海選成績(jī)?cè)?/span>90分以上(包括90分)記為“優(yōu)等”,請(qǐng)估計(jì)該校參加這次海選比賽的2000名學(xué)生中成績(jī)“優(yōu)等”的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
(1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1.
(2)作出△AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A1B2C2.
(3)請(qǐng)直接寫(xiě)出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】修正后的《水污染防治法》于2018年1月1日起施行,某企業(yè)為了提高污水處理的能力,決定購(gòu)買(mǎi)10臺(tái)污水處理設(shè)備,現(xiàn)有兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格、月處理污水量如下表:
型 | 型 | |
價(jià)格(萬(wàn)元/臺(tái)) | 12 | 10 |
處理污水量(噸/月) | 240 | 200 |
經(jīng)預(yù)算,該企業(yè)購(gòu)買(mǎi)設(shè)備的資金不高于105萬(wàn)元.
(1)請(qǐng)你設(shè)計(jì)該企業(yè)可能的購(gòu)買(mǎi)方案;
(2)若企業(yè)每月產(chǎn)生的污水量為2040噸,為了節(jié)約資金,應(yīng)選擇哪種購(gòu)買(mǎi)方案?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某種車(chē)的耗油量,我們對(duì)這種車(chē)在高速公路上做了耗油試驗(yàn),并把試驗(yàn)的數(shù)據(jù)記錄下來(lái), 制成如表:
汽車(chē)行駛時(shí)間 t(小時(shí)) | 0 | 1 | 2 | 3 | … |
油箱剩余油量 Q(升) | 100 | 94 | 88 | 82 | … |
(1)上表反映的兩個(gè)變量中,自變量是 ,因變量是 ;
(2)根據(jù)上表可知,該車(chē)油箱的大小為 升,每小時(shí)耗油 升;
(3)請(qǐng)求出兩個(gè)變量之間的關(guān)系式(用 t 來(lái)表示 Q).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com