【題目】如圖,在正方形ABCD中,O是對角線AC與BD的交點,M是BC邊上的動點(點M不與B,C重合),CN⊥DM,與AB交于點N,連接OM,ON,MN.下列四個結(jié)論:①△CNB≌△DMC;②OM=ON;③△OMN∽△OAD;④AN2+CM2=MN2,其中正確結(jié)論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
據(jù)正方形的性質(zhì),依次判定△CNB≌△DMC,△OCM≌△OBN,根據(jù)全等三角形的性質(zhì)以及勾股定理進行計算即可得出結(jié)論.
∵正方形ABCD中,CD=BC,∠BCD=90°,
∴∠BCN+∠DCN=90°,
又∵CN⊥DM,
∴∠CDM+∠DCN=90°,
∴∠BCN=∠CDM,
又∵∠CBN=∠DCM=90°,
∴△CNB≌△DMC(ASA),故①正確;
∵△CNB≌△DMC,可得CM=BN,
又∵∠OCM=∠OBN=45°,OC=OB,
∴△OCM≌△OBN(SAS),
∴OM=ON故②正確,
∵△OCM≌△OBN,
∴∠COM=∠BON,
∴∠MON=∠COB=90°,
∴△MON是等腰直角三角形,
∵△AOD也是等腰直角三角形,
∴△OMN∽△OAD,故③正確,
∵AB=BC,CM=BN,
∴BM=AN,
又∵Rt△BMN中,BM2+BN2=MN2,
∴AN2+CM2=MN2,
故④正確;
∴本題正確的結(jié)論有:①②③④,
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形DEFG的頂點D、E在△ABC的邊BC上,頂點G、F分別在邊AB、AC上,如果BC=5,△ABC的面積是10,那么這個正方形的邊長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與x軸交于點A和點B(1,0),與y軸交于點C(0,3),其對稱軸為=–1,P為拋物線上第二象限的一個動點.
(1)求拋物線的解析式并寫出其頂點坐標;
(2)當點P的縱坐標為2時,求點P的橫坐標;
(3)當點P在運動過程中,求四邊形PABC面積最大時的值及此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=,∠B=,AC=1,BC=,AB=2,AC在直線l上,將△ABC繞點A順時針轉(zhuǎn)到位置①可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=2+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=3+…,按此順序繼續(xù)旋轉(zhuǎn),得到點P2016,則AP2016=( )
A. 2016+671B. 2016+672
C. 2017+671D. 2017+672
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l//AB,l與AB之間的距離為2.C、D是直線l上兩個動點(點C在D點的左側(cè)),且AB=CD=5.連接AC、BC、BD,將△ABC沿BC折疊得到△A′BC.下列說法:①四邊形ABDC的面積始終為10;②當A′與D重合時,四邊形ABDC是菱形;③當A′與D不重合時,連接A′、D,則∠CA′D+∠BC A′=180°;④若以A′、C、B、D為頂點的四邊形為矩形,則此矩形相鄰兩邊之和為3或7.其中正確的是( )
A. ①②③④B. ①③④C. ①②④D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB=3,AC=4,BC=5,P 為邊 BC 上一動點,PE⊥AB 于 E,PF⊥AC于 F,M 為 EF 中點,則 AM 的最小值為( )
A.1B.1.3C.1.2D.1.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】基本圖形:在Rt△中,,為邊上一點(不與點,重合),將線段繞點逆時針旋轉(zhuǎn)得到.
探索:(1)連接,如圖①,試探索線段之間滿足的等量關(guān)系,并證明結(jié)論;
(2)連接,如圖②,試探索線段之間滿足的等量關(guān)系,并證明結(jié)論;
聯(lián)想:(3)如圖③,在四邊形中,.若,,則的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com