二次函數(shù)y=一x2+ax+b圖象與軸交于,兩點,且與軸交于點.

(1)則的形狀為                 ;
(2)在此拋物線上一動點,使得以四點為頂點的四邊形是梯形,則點的坐標為                     .

試題分析:(1)∵二次函數(shù)y=-x2+ax+b的圖象經(jīng)過、B(2,0)兩點,利用待定系數(shù)法就可以直接求出a、b的值,求出拋物線的解析式.
(2)在(1)題已將證得∠ACB=90°,若A、C、B、P四點為頂點的四邊形是直角梯形,則有兩種情況需要考慮:
①以BC、AP為底,AC為高;可先求出直線BC的解析式,進而可確定直線AP的解析式,聯(lián)立拋物線的解析式即可求出點P的坐標.
②以AC、BP為底,BC為高;方法同①.
解:(1))∵二次函數(shù)y=-x2+ax+b的圖象經(jīng)過、B(2,0)兩點,由題意,得
,解得:
∴拋物線的解析式為:
∴C(0,1),

CB2=BO2+CO2=5,

∴AC2+CB2=AB2,
∴△ACB是直角三角形;
(2)存在,點;
若以A、C、B、P四點為頂點的直角梯形以BC、AP為底;
∵B(2,0),C(0,1),
∴直線BC的解析式為:;

設過點B且平行于AC的直線的解析式為,
將點代入得:;

聯(lián)立拋物線的解析式有:,解得,或;
∴點;
若以A、C、B、P四點為頂點的直角梯形以AC、BP為底,
同理可求得;
故當時,以A、C、B、P四點為頂點的四邊形是直角梯形.
(根據(jù)拋物線的對稱性求出另一個P點坐標亦可)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

甲車在彎路做剎車試驗,收集到的數(shù)據(jù)如下表所示:
速度(千米/時)
0
5
10
15
20
25

剎車距離(米)
0

2

6


(1)請用上表中的各對數(shù)據(jù)作為點的坐標,在如圖所示的坐標系中畫出剎車距離(米)與速度(千米/時)的函數(shù)圖象,并求函數(shù)的解析式;

(2)在一個限速為40千米/時的彎路上,甲、乙兩車相向而行,同時剎車,但還是相撞了.事后測得甲、乙兩車剎車距離分別為12米和10.5米,又知乙車剎車距離(米)與速度(千米/時)滿足函數(shù),請你就兩車速度方面分析相撞原因.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線與直線交于點.點是拋物線上,之間的一個動點,過點分別作軸、軸的平行線與直線交于點,

(1)求拋物線的函數(shù)解析式;
(2)若點的橫坐標為2,求的長;
(3)以,為邊構造矩形,設點的坐標為,求出之間的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面直角坐標系中,將拋物線繞著原點旋轉(zhuǎn)180°,所得拋物線的解析式是(   ).
A.y=-(x-1)2-2B.y=-(x+1)2-2
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線C1的頂點為P(1,0),且過點(0,).將拋物線C1向下平移h個單位(h>0)得到拋物線C2.一條平行于x軸的直線與兩條拋物線交于A、B、C、D四點(如圖),且點A、C關于y軸對稱,直線AB與x軸的距離是m2(m>0).

(1)求拋物線C1的解析式的一般形式;
(2)當m=2時,求h的值;
(3)若拋物線C1的對稱軸與直線AB交于點E,與拋物線C2交于點F.求證:tan∠EDF﹣tan∠ECP=

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,正方形AOCB在平面直角坐標系中,點O為原點,點B在反比例函數(shù))圖象上,△BOC的面積為

(1)求反比例函數(shù)的關系式;
(2)若動點E從A開始沿AB向B以每秒1個單位的速度運動,同時動點F 從B開始沿BC向C以每秒個單位的速度運動,當其中一個動點到達端點時,另一個動點隨之停止運動.若運動時間用t表示,△BEF的面積用表示,求出S關于t的函數(shù)關系式,并求出當運動時間t取何值時,△BEF的面積最大?
(3)當運動時間為秒時,在坐標軸上是否存在點P,使△PEF的周長最?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形紙片ABCD中,BC=4,AB=3,點P是BC邊上的動點(點P不與點B、C重合).現(xiàn)將△PCD沿PD翻折,得到△PC’D;作∠BPC’的角平分線,交AB于點E.設BP=" x,BE=" y,則下列圖象中,能表示y與x的函數(shù)關系的圖象大致是(      )

A、 B、  C、 D、

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

將二次函數(shù)的圖象向左平移1個單位,再向上平移2個單位后,所得圖象的函數(shù)表達式是(    )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,有下列結論:
,②,③,④ ,⑤
其中正確的個數(shù)有(    )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習冊答案