某班同學(xué)到野外活動(dòng),為測(cè)量一池塘兩端A、B的距離,設(shè)計(jì)了幾種方案,下面介紹兩種:(Ⅰ)如圖(1),先在平地取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測(cè)出DE的距離即為AB的長.(Ⅱ)如圖(2),先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長線于E,則測(cè)出DE的長即為AB的距離.閱讀后回答下列問題:
(1)方案(Ⅰ)是否可行?為什么?
(2)方案(Ⅱ)是否切實(shí)可行?為什么?
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是________;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?
(4)方案(Ⅱ)中,若使BC=n·CD,能否測(cè)得(或求出)AB的長?理由是________,若ED=m,則AB=________.
解:(1)方案(I)可行; ∵DC=AC,EC=BC且有對(duì)頂角∠ACB=∠DCE, ∴△ACB≌△DCE(SAS),∴AB=DE, ∴測(cè)出DE的距離即為AB的長.故方案(I)可行.(3分) (2)方案(Ⅱ)可行; ∵AB⊥BC,DE⊥CD,∴∠ABC=∠EDC=90°, 又∵BC=CD,∠ACB=∠ECD,∴△ABC≌△EDC,∴AB=ED, ∴測(cè)出DE的長即為AB的距離.故方案(Ⅱ)可行.(6分) (3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是作直角三角形; 若∠ABD=∠BDE≠90°,∠ACB=∠ECD,∴△ABC∽△EDC, ∴,∴只要測(cè)出ED、BC、CD的長,即可求得AB的長. ∴ED的長不等于AB的長,∴方案(Ⅱ)不成立.(9分) (4)根據(jù)(3)中所求可以得出,∴,∵BC=n·CD, ∴ABED=n,求出DE即可得出答案, 當(dāng)ED=m,則AB=mn.(12分) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
某班同學(xué)到野外活動(dòng),為測(cè)量一池塘兩端A、B的距離,設(shè)計(jì)了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測(cè)出DE的距離即為AB的長。(II)如圖(2),先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長線于E,則測(cè)出DE的長即為AB的距離。閱讀后回答下列問題:
1.方案(I)是否可行?為什么?
2.方案(II)是否切實(shí)可行?為什么?
3.方案(II)中作BF⊥AB,ED⊥BF的目的是 ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
4.方案(II)中,若使BC=n·CD,能否測(cè)得(或求出)AB的長?理由是 ,若ED=m,則AB= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)某班同學(xué)到野外活動(dòng),為測(cè)量一池塘兩端A、B的距離,設(shè)計(jì)了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測(cè)出DE的距離即為AB的長。(II)如圖(2),先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長線于E,則測(cè)出DE的長即為AB的距離。閱讀后回答下列問題:
【小題1】(1)方案(I)是否可行?為什么?
【小題2】(2)方案(II)是否切實(shí)可行?為什么?
【小題3】(3)方案(II)中作BF⊥AB,ED⊥BF的目的是 ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
【小題4】(4)方案(II)中,若使BC=n·CD,能否測(cè)得(或求出)AB的長?理由是 ,若ED=m,則AB= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012年河北省衡水市五校九年級(jí)第三次聯(lián)考數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)某班同學(xué)到野外活動(dòng),為測(cè)量一池塘兩端A、B的距離,設(shè)計(jì)了幾種方案,下面介紹兩種:(I)如圖(1),先在平地取一個(gè)可以直接到達(dá)A、B的點(diǎn)C,并分別延長AC到D,BC到E,使DC=AC,BC=EC,最后測(cè)出DE的距離即為AB的長。(II)如圖(2),先過B點(diǎn)作AB的垂線BF,再在BF上取C、D兩點(diǎn),使BC=CD,接著過點(diǎn)D作BD的垂線DE,交AC的延長線于E,則測(cè)出DE的長即為AB的距離。閱讀后回答下列問題:
1.(1)方案(I)是否可行?為什么?
2.(2)方案(II)是否切實(shí)可行?為什么?
3.(3)方案(II)中作BF⊥AB,ED⊥BF的目的是 ;若僅滿足∠ABD=∠BDE≠90°,方案(II)是否成立?
4.(4)方案(II)中,若使BC=n·CD,能否測(cè)得(或求出)AB的長?理由是 ,若ED=m,則AB= 。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com