【題目】已知:如圖,在RtABC中,∠C=90°,有一內(nèi)接正方形DEFC,連接AFDEG,若AC=15,BC=10.

(1)求正方形DEFC的邊長;(2)求EG的長.

【答案】(1)6;(2)

【解析】試題分析:(1)首先由正方形的對邊平行,以及四條邊都相等,可得DE=DC,DE∥BC,即可得△ADE∽△ACB,又由相似三角形的對應(yīng)邊成比例,從而求得正方形的邊長;

(2)根據(jù)(1)中的方法,易得∴,,利用方程即可求得EG的長.

試題解析:(1)∵四邊形DECF是正方形,

DE=DC,DEBC,

∴△ADE∽△ACB,

,

設(shè)正方形DEFC的邊長為x,

DE=DC=x,AD=AC﹣x=15﹣x,

,

解得:x=6.

∴正方形DEFC的邊長為6;

(2)∵四邊形DECF是正方形,且邊長為6,

EF=6,EFAD,

∴△EGF∽△DGA,

,

設(shè)EG=y,則DG=6﹣y,

AD=AC﹣DC=15﹣6=9,

,

解得:y=

EG=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB兩個小機(jī)器人,自甲處同時出發(fā)相背而行,繞直徑為整數(shù)米的圓周上運動,15分鐘內(nèi)相遇7次,如果A的速度每分鐘增加6米,則AB15分鐘內(nèi)相遇9次,問圓周直徑至多是多少米?至少是多少米?(取π=3.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運算:對于任意實數(shù)ab,都有aba(ab)1,等式右邊是通常的加法、減法及乘法運算,比如:252×(25)12×(3)1=-61=-5.

(1)(2) 3的值;

(2)3x的值小于13,求x的取值范圍,并在如圖所示的數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在四邊形ABCD中,∠D=37°,點EBC邊上一點,沿AE折疊,點B落在ADB′處,若B′ECD,則∠B=_________°

2)如圖2,在四邊形ABCD中,ABCD,EBC邊上一點,沿AE折疊,點B落在ADB′處,點FBC邊上一點,沿DF折疊,點C落在ADC′處.B′EC′F有何位置關(guān)系?為什么?

3如圖3,在四邊形ABCD中,∠B=D=90°,EBC邊上一點,沿AE折疊,點B落在ADB′處,點FAD邊上一點,沿CF折疊,點D落在BCD′處.試問:AECF有何位置關(guān)系?說明理由.

4)在四邊形ABCD中,點EBC邊上一點,沿AE折疊.

①若點B落在四邊形ABCD內(nèi)B′處(如圖4),則∠1,2BAD,B之間的數(shù)量關(guān)系為________

②若點B落在四邊形ABCDB′處(如圖5),則∠1,2BAD,B之間的數(shù)量關(guān)系為 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.

⑴畫出△ABC向右平移4個單位后得到的△A1B1C1;

⑵圖中ACA1C1的關(guān)系是: ;

⑶畫出△ABCAB邊上的中線CD;

⑷△ACD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展了手機(jī)伴我健康行主題活動.他們隨機(jī)抽取部分學(xué)生進(jìn)行手機(jī)使用目的每周使用手機(jī)時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應(yīng)的圓心角度數(shù)是_______________。

2)補全條形統(tǒng)計圖

3)該校共有學(xué)生1200人,估計每周使用手機(jī)時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在反比例函數(shù)(k>0,x>0)的圖象上,點D的坐標(biāo)為(,2).

(1)求k的值;

(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的一個頂點恰好落在函數(shù)(k>0,x>0)的圖象上時,求菱形ABCD平移的距離;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計劃購買甲、乙兩種樹苗共1000株用以綠化校園,甲種樹苗每株25元,乙種樹苗每株30元,通過調(diào)查了解,甲,乙兩種樹苗成活率分別是90%和95%.

(1)若購買這種樹苗共用去28000元,則甲、乙兩種樹苗各購買多少株?

(2)要使這批樹苗的總成活率不低于92%,則甲種樹苗最多購買多少株?

(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB =AC=2,B = 40°,點D在線段BC上運動(不與點B,C重合),連接AD,作∠ADE = 40°,DE交線段AC于點E

(1)當(dāng)∠BDA = 115°時,∠BAD= °,DEC = °,當(dāng)點D從點B向點C運動時,∠BDA逐漸變 (填”) .

(2)當(dāng)DC等于多少時,ABD≌△DCE?請說明理由

(3)在點D的運動過程中,是否存在ADE是等腰三角形?若存在,請直接寫出此時∠BDA的度數(shù);若不存在,請說明理由

查看答案和解析>>

同步練習(xí)冊答案