11、如圖,△ABP與△CDP是兩個(gè)全等的等邊三角形,且PA⊥PD.有下列四個(gè)結(jié)論:
①∠PBC=15°;②AD∥BC;③直線PC與AB垂直;④四邊形ABCD是軸對稱圖形.其中正確的是
①②③④
(只需填入序號(hào)).
分析:(1)先求出∠BPC的度數(shù)是360°-60°×2-90°=30°,再根據(jù)對稱性得到△BPC為等腰三角形,∠PBC即可求出,
(2)根據(jù)題意:有△APD是等腰直角三角形;△PBC是等腰三角形;結(jié)合軸對稱圖形的定義與判定,可得四邊形ABCD是軸對稱圖形,進(jìn)而可得②③④正確.
解答:解:根據(jù)題意,∠BPC=360°-60°×2-90°=150°
∵BP=PC,
∴∠PBC=(180°-150°)÷2=15°;
①正確;
根據(jù)題意可得四邊形ABCD是軸對稱圖形,
∴②AD∥BC,③PC⊥AB正確;
④也正確.
∴四個(gè)命題都正確,
故答案為①②③④.
點(diǎn)評:本題考查軸對稱圖形的定義與判定,如果一個(gè)圖形沿著一條直線對折,兩側(cè)的圖形能完全重合,這個(gè)圖形就是軸對稱圖形.折痕所在的這條直線叫做對稱軸,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABP與△CDP是兩個(gè)全等的等邊三角形,且PA⊥PD.有下列四個(gè)結(jié)論:
(1)∠PBC=15°;(2)AD∥BC;(3)直線PC與AB垂直;(4)四邊形ABCD是軸對稱圖形.
其中正確結(jié)論個(gè)數(shù)是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠ABP與∠PBC互余,∠CBD=30°,BP平分∠ABD,則∠ABP=
60
60
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年山東省棗莊市滕州市九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,△ABP與△CDP是兩個(gè)全等的等邊三角形,且PA⊥PD.有下列四個(gè)結(jié)論:
(1)∠PBC=15°;(2)AD∥BC;(3)直線PC與AB垂直;(4)四邊形ABCD是軸對稱圖形.
其中正確結(jié)論個(gè)數(shù)是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年江蘇省無錫市新區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

如圖,△ABP與△CDP是兩個(gè)全等的等邊三角形,且PA⊥PD.有下列四個(gè)結(jié)論:
①∠PBC=15°;②AD∥BC;③直線PC與AB垂直;④四邊形ABCD是軸對稱圖形.其中正確的是    (只需填入序號(hào)).

查看答案和解析>>

同步練習(xí)冊答案