【題目】如圖,P點(diǎn)是某海域內(nèi)的一座燈塔的位置,船A停泊在燈塔P的南偏東53°方向的50海里處,船B位于船A的正西方向且與燈塔P相距20海里.(本題參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60tan53°≈1.33)

(1)試問船B在燈塔P的什么方向?

(2)求兩船相距多少海里?(結(jié)果保留根號)

【答案】(1)B在燈塔P的南偏東30°的方向上;(2)兩船相距(4010)海里.

【解析】

(1)過過PPCABABC,在RtAPC中,利用余弦的定義求出PC30海里,在RtPBC中,利用余弦定義可求出cosBPC,從而求出∠BPC30°;

(2)RtAPC中,利用正弦函數(shù)求出AC40海里,在RtPBC中,根據(jù)30°角所對的直角邊等于斜邊的一半可求出BC10,進(jìn)而可求出AB的值

(1)PPCABABC

RtAPC中,∠C90°,∠APC53°,AP50海里,

PCAPcos53°=50×0.6030海里,

RtPBC中,∵PB20,PC30,

cosBPC ,

∴∠BPC30°,

∴船B在燈塔P的南偏東30°的方向上;

(2)ACAPsin53°=50×0.840海里,

BCPB10

ABACBC(4010)海里,

答:兩船相距(4010)海里.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市射擊隊(duì)甲、乙兩名隊(duì)員在相同的條件下各射耙10次,每次射耙的成績情況如圖所示:

(1)請將下表補(bǔ)充完整:(參考公式:方差S2= [(x12+(x22+…+(xn2])

平均數(shù)

方差

中位數(shù)

7

   

7

   

5.4

   

(2)請從下列三個不同的角度對這次測試結(jié)果進(jìn)行

①從平均數(shù)和方差相結(jié)合看,   的成績好些;

②從平均數(shù)和中位數(shù)相結(jié)合看,   的成績好些;

③若其他隊(duì)選手最好成績在9環(huán)左右,現(xiàn)要選一人參賽,你認(rèn)為選誰參加,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角ABC中,BAC=90°,D在BC上,連接AD,作BFAD分別交AD于E,AC于F.

(1)如圖1,若BD=BA,求證:ABE≌△DBE;

(2)如圖2,若BD=4DC,取AB的中點(diǎn)G,連接CG交AD于M,求證:GM=2MC;AG2=AFAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開啟和關(guān)閉的連桿式活動鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點(diǎn)B、CD始終在一條直線上,已知托臂AC20厘米,托臂BD40厘米,支點(diǎn)C,D之間的距離是10厘米,張角∠CAB60°.

(1)求支點(diǎn)D到滑軌MN的距離(精確到1厘米)

(2)將滑塊A向左側(cè)移動到A′,(在移動過程中,托臂長度不變,即ACAC′,BCBC)當(dāng)張角∠CA'B45°時,求滑塊A向左側(cè)移動的距離(精確到1厘米)(備用數(shù)據(jù):1.41,1.732.45,2.65)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某興趣小組用無人機(jī)進(jìn)行航拍測高,無人機(jī)從1號樓和2號樓的地面正中間B點(diǎn)垂直起飛到高度為50米的A處,測得1號樓頂部E的俯角為60°,測得2號樓頂部F的俯角為45°.已知1號樓的高度為20米,則2號樓的高度為_____(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線yax2+bx+c(a0)x軸交于A(1,0)、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)D,對稱軸為直線x1,交x軸于點(diǎn)E,tanBDE

(1)求拋物線的表達(dá)式;

(2)若點(diǎn)P是對稱軸上一點(diǎn),且∠DCP=∠BDE,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2

1)要在這張紙板中剪出一個盡可能大的正方形,有甲、乙兩種剪法(如圖1),比較甲、乙兩種剪法,哪種剪法所得的正方形面積大?請說明理由.

2)圖1中甲種剪法稱為第1次剪取,記所得正方形面積為s1;按照甲種剪法,在余下的△ADE△BDF中,分別剪取正方形,得到兩個相同的正方形,稱為第2次剪取,并記這兩個正方形面積和為s2(如圖2),則s2=;再在余下的四個三角形中,用同樣方法分別剪取正方形,得到四個相同的正方形,稱為第3次剪取,并記這四個正方形面積和為s3,繼續(xù)操作下去,則第10次剪取時,s10=;

3)求第10次剪取后,余下的所有小三角形的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,給定銳角三角形ABC,小明希望畫正方形DEFG,使D,E位于邊BC上,F,G分別位于邊ACAB上,他發(fā)現(xiàn)直接畫圖比較困難,于是他先畫了一個正方形HIJK,使得點(diǎn)H,I位于射線BC上,K位于射線BA上,而不需要求J必須位于AC上.這時他發(fā)現(xiàn)可以將正方形HIJK通過放大或縮小得到滿足要求的正方形DEFG.

閱讀以上材料,回答小明接下來研究的以下問題:

(1)如圖2,給定銳角三角形ABC,畫出所有長寬比為21的長方形DEFG,使DE位于邊BC上,FG分別位于邊AC,AB上.

(2)已知三角形ABC的面積為36,BC12,在第(1)問的條件下,求長方形DEFG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD中,BC=3,點(diǎn)E、F分別是CB、CD延長線上的點(diǎn),DF=BE,連接AE、AF,過點(diǎn)A作AHED于H點(diǎn).

(1)求證:ADF≌△ABE;

(2)若BE=1,求tanAED的值.

查看答案和解析>>

同步練習(xí)冊答案