精英家教網 > 初中數學 > 題目詳情
如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE于G,BG=,則梯形AECD的周長為(   )
A.22B.23C.24D.25
A.

試題分析:由在?ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,易得△ABE是等腰三角形,繼而求得BE與CE的長,又由BG⊥AE于G,BG=,即可求得AE的長,繼而求得答案:
∵四邊形ABCD是平行四邊形,∴BC=AD=9,CD=AB=6,AD∥BC. ∴∠DAE=∠AEB.
∵AE平分∠BAD,∴∠DAE=∠BAE. ∴∠BAE=∠BEA. ∴BE="AB=6." ∴EC=BC-BE=3.
∵BG⊥AE,∴.
∴AE=AG+EG=4.
∴梯形AECD的周長為:AD+CD+CE+AE=9+6+3+4=22.
故選A.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

小明在一次數學興趣小組活動中,對一個數學問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=SABF(S表示面積)

問題遷移:如圖2:在已知銳角∠AOB內有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉的過程中發(fā)現,△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部門計劃以公路OA、OB和經過防疫站P的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66°,∠POB=30°,OP=4km,試求△MON的面積.(結果精確到0.1km2)(參考數據:sin66°≈0.91,tan66°≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)(6,3)(,)、(4、2),過點p的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形面積的最大值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

邊長為2的正方形ABCD的兩頂點A、C分別在正方形EFGH的兩邊DE、DG上(如圖1),現將正方形ABCD繞D點順時針旋轉,當A點第一次落在DF上時停止旋轉,旋轉過程中, AB邊交DF于點M,BC邊交DG于點N.
(1)求邊DA在旋轉過程中所掃過的面積;
(2)旋轉過程中,當MN和AC平行時(如圖2),求正方形ABCD旋轉的度數;
(3)如圖3,設△MBN的周長為p,在旋轉正方形ABCD的過程中,p值是否有變化?請證明你的結論.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連結AG、CF.
(1)求證:①△ABG≌△AFG; ②BG=GC;
(2)求△FGC的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

順次連接四邊形四邊中點所組成的四邊形是菱形,則原四邊形為       (     )
A.平行四邊形B.菱形C.對角線相等的四邊形D.對角線垂直的四邊形

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,在?ABCD中,AD=2,AB=4,∠A=30°,以點A為圓心,AD的長為半徑畫弧交AB于點E,連接CE,則陰影部分的面積是      (結果保留π).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,則其面積為( 。
A.4B.C.1D.2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

用直尺和圓規(guī)作一個菱形,如圖,能得到四邊形ABCD是菱形的依據是 ( )
A.一組鄰邊相等的四邊形是菱形
B.四邊相等的四邊形是菱形
C.對角線互相垂直的平行四邊形是菱形
D.每條對角線平分一組對角的平行四邊形是菱形

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

在平行四邊形ABCD中,∠B+∠D=200o, 則∠A=      ,∠D=      

查看答案和解析>>

同步練習冊答案