【題目】(1)觀察下列圖形與等式的關(guān)系,并填空:
(2)觀察下圖,根據(jù)(1)中結(jié)論,計算圖中黑球的個數(shù),用含有n的代數(shù)式填空:
1+3+5+…+(2n﹣1)+( )+(2n﹣1)+…+5+3+1= .
【答案】(1);;(2)2n+1;.
【解析】
試題分析:(1)根據(jù)1+3+5+7=16可得出16=42;設(shè)第n幅圖中球的個數(shù)為an,列出部分an的值,根據(jù)數(shù)據(jù)的變化找出變化規(guī)律“an﹣1=1+3+5+…+(2n﹣1)=”,依此規(guī)律即可解決問題;
(2)觀察(1)可將(2)圖中得黑球分三部分,1到n行,第n+1行,n+2行到2n+1行,再結(jié)合(1)的規(guī)律即可得出結(jié)論.
試題解析:(1)1+3+5+7=16=,設(shè)第n幅圖中球的個數(shù)為an,觀察,發(fā)現(xiàn)規(guī)律:a1=1+3=,a2=1+3+5=,a3=1+3+5+7=,…,∴an﹣1=1+3+5+…+(2n﹣1)=.
故答案為:;.
(2)觀察圖形發(fā)現(xiàn):
圖中黑球可分三部分,1到n行,第n+1行,n+2行到2n+1行,即1+3+5+…+(2n﹣1)+[2(n+1)﹣1]+(2n﹣1)+…+5+3+1=1+3+5+…+(2n﹣1)+(2n+1)+(2n﹣1)+…+5+3+1=an﹣1+(2n+1)+an﹣1==.
故答案為:2n+1;.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1,l2,過點(1,0)作x軸的垂線交l2于點A1,過點A1作y軸的垂線交l2于點A2,過點A2作x軸的垂線交l2于點A3,過點A3作y軸的垂線交l2于點A4,…依次進行下去,則點A2017的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程(x﹣1)2=0的根的情況是( )
A.有兩個不相等的實數(shù)根B.有兩個相等的實數(shù)根
C.有一個實數(shù)根D.無實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小馬虎解的一道題.
題目:在同一平面上,若∠BOA=70。 , ∠BOC=15。 , 求∠AOC的度數(shù)。
解:根據(jù)題意畫圖,如右圖所示:
∵∠AOC=∠BOA-∠BOC=70。-15。=55。 ,
∴∠A0C=55。 .
若你是老師,會判小馬虎滿分嗎?若會,請說明理由;若不會,請將小馬虎的錯誤指出,并給出你認(rèn)為正確的解法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一列按一定順序和規(guī)律排列的數(shù):
第一個數(shù)是;
第二個數(shù)是;
第三個數(shù)是;
…
對任何正整數(shù)n,第n個數(shù)與第(n+1)個數(shù)的和等于.
(1)經(jīng)過探究,我們發(fā)現(xiàn):,,;
設(shè)這列數(shù)的第5個數(shù)為a,那么,,,哪個正確?
請你直接寫出正確的結(jié)論;
(2)請你觀察第1個數(shù)、第2個數(shù)、第3個數(shù),猜想這列數(shù)的第n個數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿足“第n個數(shù)與第(n+1)個數(shù)的和等于”;
(3)設(shè)M表示,,,…,,這2016個數(shù)的和,即,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y=﹣x2向左平移2個單位后,得到的拋物線的解析式是( )
A.y=﹣(x+2)2
B.y=﹣x2+2
C.y=﹣(x﹣2)2
D.y=﹣x2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個用鐵絲圍成的籃框,我們來仿制一個類似的柱體形籃框.如圖2,它是由一個半徑為r、圓心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干個缺一邊的矩形狀框A1C1D1B1、A2C2D2B2、…、AnBnCnDn,OEFG圍成,其中A1、G、B1在上,A2、A3…、An與B2、B3、…Bn分別在半徑OA2和OB2上,C2、C3、…、Cn和D2、D3…Dn分別在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,F(xiàn)H1=H1H2=d,C1D1、C2D2、C3D3、CnDn依次等距離平行排放(最后一個矩形狀框的邊CnDn與點E間的距離應(yīng)不超過d),A1C1∥A2C2∥A3C3∥…∥AnCn.
(1)求d的值;
(2)問:CnDn與點E間的距離能否等于d?如果能,求出這樣的n的值,如果不能,那么它們之間的距離是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com