【題目】如圖,已知在△ABC中,AB=AC,點D為BC上一點(不與點B、點C重合),連結(jié)AD,以AD為邊在AC同側(cè)作△ADE,DE交AC于點F,其中AD=AE,∠ADE=∠B.
(1)求證:△ABD∽△AEF;
(2)若,記△ABD的面積為S1,△AEF的面積為S2,求的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數(shù)y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Q是y軸上的一個動點.
(1)請直接寫出a,k,b的值及關(guān)于x的不等式ax2<kx﹣2的解集;
(2)當(dāng)點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標(biāo);
(3)是否存在以P,Q,A,B為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標(biāo);
(3)在對稱軸上是否存在一點M,使△ANM的周長最小.若存在,請求出M點的坐標(biāo)和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c的部分圖象,A(1,0),B(0,3).
(1)求拋物線的解析式;
(2)若拋物線與x軸的另一個交點是C點,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,點D為BC邊上一點(不與點B,點C重合),連結(jié)AD,點E、點F分別為AB、AC上的點,且EF∥BC,交AD于點G,連結(jié)BG,并延長BG交AC于點H.已知=2,①若AD為BC邊上的中線,的值為;②若BH⊥AC,當(dāng)BC>2CD時,<2sin∠DAC.則( )
A. ①正確;②不正確B. ①正確;②正確
C. ①不正確;②正確D. ①不正確;②正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是Rt△ABC斜邊AB上的中線,過點D垂直于AB的直線交BC于E,交AC延長線于F.
求證:(1)△ADF∽△EDB;
(2)CD2=DEDF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉(zhuǎn)180°得C2,交x軸于點A2;將C2繞點A2旋轉(zhuǎn)180°得C3,交x軸于點A3;…如此進行下去,直至得C17.若P(50,m)在第17段拋物線C17上,則m=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABGH、BCFG、CDEF是邊長為1的正方形,連接BH、CH、DH,求證:∠ABH+∠ACH+∠ADH=90°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com