【題目】在平面直角坐標系中,點0為坐標原點,拋物線y=ax2﹣2ax﹣3a與x軸交于點B,C,與y軸交于點A,點A的坐標為(0,),點D為拋物線的頂點.
(1)如圖1,求拋物線的頂點D的坐標;
(2)如圖2,點P是第一象限內對稱軸右側拋物線上一點,連接PB,過點D作DQ⊥BP于點H,交x軸于點Q,設點P的橫坐標為m,點Q的橫坐標為n,求n與m的函數關系式;
(3)如圖3,在(2)的條件下,過點C作CE∥y軸交BP的延長線于點E,點F為CE的中點,連接FQ,若∠DQC+∠CQF=135°,求點P的坐標.
【答案】(1)D(1,2);(2)n=4﹣m;(3)P(,).
【解析】
(1)將點A代入拋物線解析式可求出a,拋物線解析式和頂點D可求.
(2)分別過點D、P作x軸的垂線,可得到三角形相似,用點坐標轉換線段長度,列比例關系就可以得到m和n的函數關系.
(3)用點坐標轉換為線段長度,可以得到相關線段的長度相等,從而得到全等三角形及相似三角形,列比例關系就可以得到點P的坐標.
(1)將點A(0,)代入拋物線中,
﹣3a=,
解得a=﹣,
∴拋物線的解析式為y=﹣x2+x+,
∵﹣=1,解得y=2,
∴D(1,2).
(2)如圖1所示,過點D作DH垂直于x軸于點H,過點P作PN垂直于x軸于點N,
∴DH=2,QH=n﹣1,PN=,BN=m+1,
∵△BPN∽△DHQ,
∴,即,
解得n=4﹣m.
(3)如圖2所示,
∵D(1,2),Q(4﹣m,0),C(3,0)B(﹣1,0),
∴BN=2,DN=2,NQ=3﹣m,
∵∠BNG=∠DNQ,∠NDQ=∠GBN,
∴△BGN≌△DNQ(ASA),
∴GN=NQ=3﹣m,
連接GQ,
∴∠GQN=45°,
∵∠DQC+∠FQC=135°,
∴∠GQD=∠FQC,
∵DG=m﹣1,
過點P作y軸的平行線PM,過點D作x軸的平行線交MP于點M,連接MG,
∴MD=m﹣1,
∴MD=DG,
∴∠DGM=45°,
∵∠NGQ=45°,
∴∠MGQ=90°,
∴∠MGP=∠GQD=∠FQC,
連接GF,GF∥BC,
∴∠GFQ=∠FQC=∠MGP,∠FGQ=∠GMP=45°,
∴△GMP∽△GQF,
∴,
∵,,
∴,
解得m1=1(舍),m2=,
∴m=,
∴P(,).
科目:初中數學 來源: 題型:
【題目】某商場對某種商品進行銷售,第x天的銷售單價為m元/件,日銷售量為n件,其中m,n分別是x(1≤x≤30,且x為整數)的一次函數,銷售情況如下表:
(1)過程表中數據,分別直接寫出m與x,n與x的函數關系式: , ;
(2)求商場銷售該商品第幾天時該商品的日銷售額恰好為3600元?
(3)銷售商品的第15天為兒童節(jié),請問:在兒童節(jié)前(不包括兒童節(jié)當天)銷售該商品第幾天時該商品的日銷售額最多?商場決定將這天該商品的日銷售額捐獻給兒童福利院,試求出商場可捐款多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉中心轉動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).
(1)當PE⊥AB,PF⊥BC時,如圖1,則的值為 ;
(2)現(xiàn)將三角板繞點P逆時針旋轉α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎上繼續(xù)旋轉,當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年中國北京世界園藝博覽會(以下簡稱“世園會”)于4月29日至10月7日在北京延慶區(qū)舉行.世園會為滿足大家的游覽需求,傾情打造了4條各具特色的趣玩路線,分別是:.“解密世園會”、.“愛我家,愛園藝”、.“園藝小清新之旅”和.“快速車覽之旅”.李欣和張帆都計劃暑假去世園會,他們各自在這4條線路中任意選擇一條線路游覽,每條線路被選擇的可能性相同.
(1)李欣選擇線路.“園藝小清新之旅”的概率是多少?
(2)用畫樹狀圖或列表的方法,求李欣和張帆恰好選擇同一線路游覽的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形網格紙中,每一個小正方形的邊長為一線段AB的兩個端點都在小正方形的頂點上,請按下面的要求畫圖.
(1)在圖1中畫鈍角三角形ABC,點C落在小正方形頂點上,其中△ABC有一個內角為135°,△ABC的面積為4,并直接寫出∠ABC的正切值;
(2)在圖1中沿小正方形網格線畫一條裁剪線,沿此裁剪線將鈍角三角形ABC分隔成兩部分圖形,按所裁剪圖形的實際大小,將這兩部分圖形在圖2中拼成一個平行四邊形DEFG,要求裁成的兩部分圖形在拼成平行四邊形時互不重疊且不留空隙,其中所拼成的平行四邊形的周長為8+2,各頂點必須與小正方形的頂點重合.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著通訊技術的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數學興趣小組設計了“你最喜歡的溝通方式”調查問卷(每人必選且只選一種),在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次統(tǒng)計共抽查了 名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數為 ;
(2)將條形統(tǒng)計圖補充完整;
(3)該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名?
(4)某天甲、乙兩名同學都想從“微信”、“QQ”、“電話”三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選擇同一種溝通方式的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△OAB中,OA=4,AB=5,點C在OA上,AC=1,⊙P的圓心P在線段BC上,且⊙P與邊AB,AO都相切.若反比例函數(k≠0)的圖象經過圓心P,則k=________________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一種商品,單價30元,試銷中發(fā)現(xiàn)這種商品每天的銷售量夕(件)與每件的銷售價(元)滿足關系:=100-2.若商店每天銷售這種商品要獲得200元的銷售利潤,那么每件商品的售價應定為多少元?每天要售出這種商品多少件?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠ACB=90°,在△ABC內一點P,已知∠1=∠2=∠3,將△BCP以直線PC為對稱軸翻折,使點B與點D重合,PD與AB交于點E,連結AD,將△APD的面積記為S1,將△BPE的面積記為S2,則的值為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com