如果△ABC的邊BC的垂直平分線經(jīng)過頂點A,與BC相交于點D,且AB=2AD,則△ABC中,最大一個內(nèi)角的度數(shù)為________度.

120
分析:根據(jù)三角函數(shù)和三角形內(nèi)角和定理解答.
解答:解:如圖:
∵sinB==,∴∠B=30°.
∵AD垂直且平分BC,∴∠B=∠C=30°.
∴∠BAC=180°-∠B-∠C=180°-30°-30°=120°.
點評:此題較簡單,只要畫出圖形便可直觀解答.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如果△ABC的邊BC的垂直平分線經(jīng)過頂點A,與BC相交于點D,且AB=2AD,則△ABC中,最大一個內(nèi)角的度數(shù)為
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•龍巖)如圖1,過△ABC的頂點A作高AD,將點A折疊到點D(如圖2),這時EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對稱軸EH、FG折疊,使B、C兩點都與點D重合,得到一個矩形EFGH(如圖3),我們稱矩形EFGH為△ABC的邊BC上的折合矩形.
(1)若△ABC的面積為6,則折合矩形EFGH的面積為
3
3
;
(2)如圖4,已知△ABC,在圖4中畫出△ABC的邊BC上的折合矩形EFGH;
(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=
2a
2a
,正方形EFGH的對角線長為
2
a
2
a

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(福建龍巖卷)數(shù)學(帶解析) 題型:解答題

如圖1,過△ABC的頂點A作高AD,將點A折疊到點D(如圖2),這時EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對稱軸EH、FG折疊,使B、C兩點都與點D重合,得到一個矩形EFGH(如圖3),我們稱矩形EFGH為△ABC的邊BC上的折合矩形.

(1)若△ABC的面積為6,則折合矩形EFGH的面積為        
(2)如圖4,已知△ABC,在圖4中畫出△ABC的邊BC上的折合矩形EFGH;
(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=      ,正方形EFGH的對角線長為        

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(福建龍巖卷)數(shù)學(解析版) 題型:解答題

如圖1,過△ABC的頂點A作高AD,將點A折疊到點D(如圖2),這時EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對稱軸EH、FG折疊,使B、C兩點都與點D重合,得到一個矩形EFGH(如圖3),我們稱矩形EFGH為△ABC的邊BC上的折合矩形.

(1)若△ABC的面積為6,則折合矩形EFGH的面積為        

(2)如圖4,已知△ABC,在圖4中畫出△ABC的邊BC上的折合矩形EFGH;

(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=       ,正方形EFGH的對角線長為        

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖1,過△ABC的頂點A作高AD,將點A折疊到點D(如圖2),這時EF為折痕,且△BED和△CFD都是等腰三角形,再將△BED和△CFD沿它們各自的對稱軸EH、FG折疊,使B、C兩點都與點D重合,得到一個矩形EFGH(如圖3),我們稱矩形EFGH為△ABC的邊BC上的折合矩形.
(1)若△ABC的面積為6,則折合矩形EFGH的面積為________;
(2)如圖4,已知△ABC,在圖4中畫出△ABC的邊BC上的折合矩形EFGH;
(3)如果△ABC的邊BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC邊上的高AD=________,正方形EFGH的對角線長為________.

查看答案和解析>>

同步練習冊答案