【題目】如圖,矩形ABCD中,E是AD的中點,將△ABE沿BE折疊后得到△GBE,延長BG交CD于F點,若CF=1,F(xiàn)D=2,則BC的長為( )
A.3
B.2
C.2
D.2
【答案】B
【解析】解:過點E作EM⊥BC于M,交BF于N,
∵四邊形ABCD是矩形,
∴∠A=∠ABC=90°,AD=BC,
∵∠EMB=90°,
∴四邊形ABME是矩形,
∴AE=BM,
由折疊的性質得:AE=GE,∠EGN=∠A=90°,
∴EG=BM,
∵∠ENG=∠BNM,
∴△ENG≌△BNM(AAS),
∴NG=NM,
∴CM=DE,
∵E是AD的中點,
∴AE=ED=BM=CM,
∵EM∥CD,
∴BN:NF=BM:CM,
∴BN=NF,
∴NM= CF= ,
∴NG= ,
∵BG=AB=CD=CF+DF=3,
∴BN=BG﹣NG=3﹣ = ,
∴BF=2BN=5,
∴BC= = =2 .
故選B.
首先過點E作EM⊥BC于M,交BF于N,易證得△ENG≌△BNM(AAS),MN是△BCF的中位線,根據(jù)全等三角形的性質,即可求得GN=MN,由折疊的性質,可得BG=3,繼而求得BF的值,又由勾股定理,即可求得BC的長.
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax+bx+c上部分點的橫坐標x,縱坐標y的對應值如下表,從下表可知:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
下列說法錯誤的是( )。
A.拋物線與x軸的另一個交點為(3,0);
B.函數(shù)的最大值為6;
C.拋物線的對稱軸是直線x=0.5;
D.在對稱軸的左側,y隨x的增大而增大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知OB=1,以OB為直角邊作等腰直角三角形A1BO,再以OA1為直角邊作等腰直角三角形A2A1O,如此下去,則線段OAn的長度為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】月電科技有限公司用160萬元,作為新產品的研發(fā)費用,成功研制出了一種市場急需的電子產品,已于當年投入生產并進行銷售.已知生產這種電子產品的成本為4元/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量y(萬件)與銷售價格x(元/件)的關系如圖所示,其中AB為反比例函數(shù)圖象的一部分,BC為一次函數(shù)圖象的一部分.設公司銷售這種電子產品的年利潤為s(萬元).(注:若上一年盈利,則盈利不計入下一年的年利潤;若上一年虧損,則虧損計作下一年的成本.)
(1)請求出y(萬件)與x(元/件)之間的函數(shù)關系式;
(2)求出第一年這種電子產品的年利潤s(萬元)與x(元/件)之間的函數(shù)關系式,并求出第一年年利潤的最大值.
(3)假設公司的這種電子產品第一年恰好按年利潤s(萬元)取得最大值時進行銷售,現(xiàn)根據(jù)第一年的盈虧情況,決定第二年將這種電子產品每件的銷售價格x(元)定在8元以上(x>8),當?shù)诙甑哪昀麧櫜坏陀?03萬元時,請結合年利潤s(萬元)與銷售價格x(元/件)的函數(shù)示意圖,求銷售價格x(元/件)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知梯形ABCD中,ADBC,AC、BD相交于點O,AB⊥AC,AD=CD,AB=3,BC=5.求:
(1)tan∠ACD的值;
(2)梯形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖⊙O中,半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC,若AB=8,CD=2,則EC的長度為( )
A.2
B.8
C.2
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結DH與BE相交于點G.
(1)求證:BF=AC;
(2)求證:CE= BF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1, ),則點C的坐標為( )
A.(﹣ ,1)
B.(﹣1, )
C.( ,1)
D.(﹣ ,﹣1)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com