【題目】某商店盈利80元,記作+80元,那么虧損50元記作__________元.

【答案】-50

【解析】分析:本題考查的負數(shù)和正數(shù)表示相反意義的量.

解析:因為盈利表示正數(shù),所以虧損表示負數(shù),所以虧損50元記作-50

故答案為-50.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ACBD,連接AB,直線AC、BD及線段AB把平面分成①、②、③、④四個部分,規(guī)定:線上各點不屬于任何部分.當(dāng)動點P落在某個部分時,連接PA,PB,構(gòu)成PAC,APB,PBD三個角.(提示:有公共端點的兩條重合的射線所組成的角是0°角)

(1)當(dāng)動點P落在第①部分時,求證:APB=PAC+PBD;

(2)當(dāng)動點P落在第②部分時,APB=PAC+PBD是否成立?(直接回答成立或不成立)

(3)當(dāng)動點P落在第③部分時,全面探究PACAPB,PBD之間的關(guān)系,并寫出動點P的具體位置和相應(yīng)的結(jié)論.選擇其中一種結(jié)論加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算正確的是( ).

A.a(chǎn)3+a2=a5

B.a(chǎn)6÷a2=a3

C.(3a22a3=6a6

D.(ab1)2=a2b2+2ab+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,正方形OABC的邊長為4,頂點A、C分別在x軸、y軸的正半軸,拋物線y=﹣x2+bx+c經(jīng)過B、C兩點,點D為拋物線的頂點,連接AC、BD、CD.

(1)求此拋物線的解析式.

(2)求此拋物線頂點D的坐標和四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句中不屬于命題的個數(shù)是( )

延長線段AB;②自然數(shù)都是整數(shù);兩個銳角的和一定是直角;同角的余角相等

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對頂角相等改寫成如果……那么……”的形式是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元時,則每個月少買5件(每件售價不能高于65元),設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.

(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;

(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大利潤是多少?

(3)每件商品的售價定為多少元時,每個月的利潤恰為3200元?根據(jù)以上結(jié)論,請你直接寫出售價在什么范圍內(nèi),每個月的利潤不低于3200元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,長方形ABCD中,A=B=C=D=90°,AB=CD,AD=BC,且,點P、Q分別是邊AD、AB上的動點.

(1)求BD的長;

(2)①如圖2,在P、Q運動中是否能使CPQ成為等腰直角三角形?若能,請求出PA的長;若不能,請說明理由;

②如圖3,在BC上取一點E,使EC=5,那么當(dāng)EPC為等腰三角形時,求出PA的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,E=18°,BE平分ABC,CE平分ACD,則A等于(

A36° B30° C20° D18°

查看答案和解析>>

同步練習(xí)冊答案