【題目】如圖,某養(yǎng)殖場在養(yǎng)殖面積擴建中,準備將總長為米的籬笆圍成 矩形形狀的雞舍,其中一邊利用現(xiàn)有的一段足夠長的圍墻,其余三邊 用籬笆,且在與墻平行的一邊上開一個米寬的門.設邊長為米, 雞舍面積為平方米.

求出的函數(shù)關系式;(不需寫自變量的取值范圍).

當雞舍的面積為平方米時,求出雞舍的一邊的長.

【答案】1y= -2x2+80x;(2AB的長為20

【解析】

1)設AB邊長為x米,則BC的長是78+2-2x,然后根據矩形的面積公式解答即可;

2)令y=800得到關于x的一元二次方程,解方程求解即可.

解:(1)設AB邊長為x米,雞舍面積為y平方米,

由題意得:y=AB×AD=x(78+2-2x)=x(80-2x)=-2x2+80x;

2)由題意得: -2x2+80x=800,

解得:x=20,

答:雞舍的一邊AB的長為20米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:

如圖①,在四邊形ADBC中,∠ACB=ADB=90°,AD=BD,探究線段ACBC,CD之間的數(shù)量關系.

小吳同學探究此問題的思路是:將BCD繞點D,逆時針旋轉90°AED處,點B,C分別落在點A,E處(如圖②),易證點CA,E在同一條直線上,并且CDE是等腰直角三角形,所以CE=CD,從而得出結論:AC+BC=CD

簡單應用:

1)在圖①中,若AC=2,BC=4,則CD=

2)如圖③,AB是⊙O的直徑,點C、D在⊙上,弧AD=弧BD,若AB=13,BC=12,求CD的長.

拓展規(guī)律:

3)如圖4,ABC中,∠ACB=90°AC=BC,點PAB的中點,若點E滿足AE=AC,CE=CA,且點E在直線AC的左側時,點QAE的中點,則線段PQAC的數(shù)量關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將拋物線M1yax2+4x向右平移3個單位,再向上平移3個單位,得到拋物線M2,直線yxM1的一個交點記為A,與M2的一個交點記為B,點A的橫坐標是﹣3

1)求a的值及M2的表達式;

2)點C是線段AB上的一個動點,過點Cx軸的垂線,垂足為D,在CD的右側作正方形CDEF

當點C的橫坐標為2時,直線yx+n恰好經過正方形CDEF的頂點F,求此時n的值;

在點C的運動過程中,若直線yx+n與正方形CDEF始終沒有公共點,求n的取值范圍(直接寫出結果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】給出如下規(guī)定:兩個圖形,點上任一點,點上任一點,如果線段的長度存在最小值,就稱該最小值為兩個圖形之間的距離.

在平面直角坐標系xOy中,0為坐標原點.

1)點的坐標為,則點和射線之間的距離為______,點和射線之間的距離為    

2)如果直線和雙曲線之間的距離為,那么____(可在圖1中進行研究)

3)點的坐標為,將射線繞原點逆時針旋轉,得到射線,在坐標平面內所有和射線之間的距離相等的點所組成的圖形記為圖形

①請在圖2中畫出圖形,井描述圖形的組成部分:(若涉及平面中某個區(qū)域時可以用陰影表示)

②將射線組成的圖形記為圖形,拋物線與圖形的公共部分記為圖形,請直接寫出圖形和圖形之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料:

某同學遇到這樣一個問題:在平面直角坐標系中,已知直線在拋物線上,求點到直線的距離

如圖1,他過點于點軸分別交軸于點交直線于點.他發(fā)現(xiàn),可求出的長,再利用求出的長,即為點到直線的距離

     

請回答:

(1)圖1中, ,點到直線的距離

參考該同學思考問題的方法,解決下列問題:

在平面直角坐標系中,點是拋物線上的一動點,設點到直線的距離為

(2)如圖2,

,則點的坐標為 ;

,在點運動的過程中,求的最小值;

(3)如圖3,,在點運動的過程中,的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網格中,.線段與線段存在一種變換關系,即其中一條線段繞著某點旋轉一個角度可以得到另一條線段,則這個旋轉中心的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】使得關于x的分式方程2有正整數(shù)解,且關于x的不等式組至少有4個整數(shù)解,那么符合條件的所有整數(shù)a的和為(  )

A.20B.17C.9D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:點PABC內部或邊上的點(頂點除外),在PAB,PBC,PCA中,若至少有一個三角形與ABC相似,則稱點PABC的自相似點.

例如:圖1,PABC的內部,PBC=A,PCB=ABCBCP∽△ABC,故PABC的自相似點.

請你運用所學知識,結合上述材料,解決下列問題:

在平面直角坐標系中,M曲線C上的任意一點,點Nx軸正半軸上的任意一點.

(1) 如圖2,點P是OM上一點,ONP=M, 試說明點P是MON的自相似點; M的坐標是,N的坐標是時,求點P 的坐標;

(2) 如圖3,當M的坐標是,N的坐標是時,求MON的自相似點的坐標;

(3) 是否存在點M和點N,使MON無自相似點,?若存在,請直接寫出這兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在銳角ABC中,邊BC長為18,高AD長為12

1)如圖,矩形EFCH的邊GHBC邊上,其余兩個頂點EF分別在AB、AC邊上,EFAD于點K,求的值;

2)設EHx,矩形EFGH的面積為S,求Sx的函數(shù)關系式,并求S的最大值.

查看答案和解析>>

同步練習冊答案