【題目】如圖所示,已知在中,BE平分AC于點(diǎn)E,AB于點(diǎn)D,則的度數(shù)為________

【答案】

【解析】

由已知條件只能得到∠ACD=90°,由三角形外角性質(zhì)可知∠BEA=ACD+BCD+CBE,因此求出∠BCD+CBE的度數(shù)即可得到答案;由垂直的定義及三角形內(nèi)角和定理易得∠A+ABC+BCD=90°,結(jié)合角平分線的概念及∠BCD=A即可得到∠BCD+CBE的度數(shù),進(jìn)而可對(duì)題目進(jìn)行解答.

CDAC,

∴∠ACD=90°,

∴∠A+ABC+BCD=180°-ACD=90°.

BE平分∠ABC,

∴∠ABC=2CBE.

∵∠BCD=A,

∴∠A+ABC+BCD=2BCD+2CBE=90°,

∴∠BCD+CBE=45°,

∴∠BEA=ACD+BCD+CBE=135°.

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】臺(tái)客隆超市在剛剛的元旦期間舉行促銷優(yōu)惠活動(dòng),當(dāng)天到該超市購買商品有兩種方案,方案一:用168元購買會(huì)員卡成為會(huì)員后,憑會(huì)員卡購買超市內(nèi)任何商品,一律按商品價(jià)格的8折優(yōu)惠;方案二:若不購買會(huì)員卡,則購買超市內(nèi)任何商品一律按商品價(jià)格的95折優(yōu)惠.已知小敏不是該超市的會(huì)員.

1)若小敏不購買會(huì)員卡,所購買商品的價(jià)格為120元時(shí),實(shí)際應(yīng)支付多少元?

2)請(qǐng)幫小敏算一算,她購買商品的原價(jià)為多少元時(shí),兩個(gè)方案所付金額相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國光商場銷售一種西裝和領(lǐng)帶,西裝每套定價(jià)500元,領(lǐng)帶每條定價(jià)100元.國慶70周年期間,商場決定開展促銷活動(dòng),向客戶提供兩種優(yōu)惠方案.

方案一:買一套西裝送一條領(lǐng)帶;

方案二:西裝和領(lǐng)帶都按照定價(jià)的90%付款.

現(xiàn)某客戶要到該商場購買西裝8套,領(lǐng)帶條(

1)若,問應(yīng)選擇哪種購買方案更實(shí)惠?

2)當(dāng)購買的領(lǐng)帶條數(shù)為多少時(shí),方案一和方案二一樣優(yōu)惠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以直線上一點(diǎn)為端點(diǎn)作射線,使,將一塊直角三角板的直角頂點(diǎn)放在處,一邊放在射線上,將直角三角板繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)直至邊第一次重合在射線上停止.

1)如圖1,邊在射線上,則 ;

2)如圖2,若恰好平分,則 ;

3)如圖3,若,則 ;

4)在旋轉(zhuǎn)過程中,始終保持的數(shù)量關(guān)系是 ,并請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=ACE,F分別是ABAC上的點(diǎn),且AE=AF,BF、CE相交于點(diǎn)O,連接AO并延長交BC于點(diǎn)D,則圖中全等三角形有(

A. 4對(duì)B. 5對(duì)C. 6對(duì)D. 7對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①全等三角形的對(duì)應(yīng)邊上的中線,高線,對(duì)應(yīng)角的平分線對(duì)應(yīng)相等;②兩邊和其中一邊上的中線(或第三邊上的中線)對(duì)應(yīng)相等的兩個(gè)三角形全等;③兩角和其中一角的角平分線(或第三角的角平分線)對(duì)應(yīng)相等的兩個(gè)三角形全等;④兩邊和其中一邊上的高線(或第三邊上的高線)對(duì)應(yīng)相等的兩個(gè)三角形全等.其中正確命題有________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,則一次函數(shù)y=bx+b2﹣4ac與反比例函數(shù)y=在同一坐標(biāo)系內(nèi)的圖象大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某人在山坡坡腳A處測得電視塔尖點(diǎn)C 的仰角為60°,沿山坡向上走到P處再測得C的仰角為45°,已知OA=200米,山坡坡度為(即tanPAB),且OAB在同一條直線上,求電視塔OC的高度以及此人所在位置點(diǎn)P的垂直高度.(測傾器的高度忽略不計(jì),結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為 4 的等邊ABC 中,點(diǎn) D 從點(diǎn)A 開始在射線 AB 上運(yùn)動(dòng),速度為 1 個(gè)單位/秒,點(diǎn)F 同時(shí)從 C 出發(fā),以相同的速度沿射線 BC 方向運(yùn)動(dòng),過點(diǎn)D DEAC,連結(jié) DF 交射線 AC 于點(diǎn) G

(1)當(dāng) DFAB 時(shí),求 t 的值;

(2)當(dāng)點(diǎn) D 在線段 AB 上運(yùn)動(dòng)時(shí),是否始終有 DG=GF?若成立,請(qǐng)說明理由。

(3)聰明的斯揚(yáng)同學(xué)通過測量發(fā)現(xiàn),當(dāng)點(diǎn) D 在線段 AB 上時(shí),EG 的長始終等于 AC 的一半,他想當(dāng)點(diǎn)D 運(yùn)動(dòng)到圖 2 的情況時(shí),EG 的長是否發(fā)生變化?若改變,說明理由;若不變,求出 EG 的長。

查看答案和解析>>

同步練習(xí)冊(cè)答案