(2008•綿陽)如圖,矩形ABCD中,AB=8,BC=10,點P在矩形的邊DC上由D向C運動.沿直線AP翻折△ADP,形成如下四種情形.設DP=x,△ADP和矩形重疊部分(陰影)的面積為y.

(1)如圖丁,當點P運動到與C重合時,求重疊部分的面積y;
(2)如圖乙,當點P運動到何處時,翻折△ADP后,點D恰好落在BC邊上這時重疊部分的面積y等于多少?
(3)閱讀材料:已知銳角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα來表示,即(α≠45°).根據(jù)上述閱讀材料,求出用x表示y的解析式,并指出x的取值范圍.
(提示:在圖丙中可設∠DAP=a)
【答案】分析:(1)根據(jù)三角形的面積公式,只需求得CE的長,根據(jù)平行線的性質(zhì)以及折疊的性質(zhì)發(fā)現(xiàn)等腰三角形ACE,設CE=m,則DE=10-m.在直角三角形CED′中,根據(jù)勾股定理即可求解;
(2)要求DP的長,也可在直角三角形CPD′中,根據(jù)勾股定理求解;
(3)根據(jù)(2)的結(jié)論,知分為兩種情況討論:當0≤x≤5時,由圖甲知y=S△ADP;當5<x<8時,如圖丙,重疊部分的面積即是直角梯形的面積減去兩個直角三角形的面積.
解答:解:(1)由題意可得∠DAC=∠D′AC=∠ACE,∴AE=CE.
設AE=CE=m,則BE=10-m.
在Rt△ABE中,得m2=82+(10-m)2,∴m=8.2.
∴重疊部分的面積y=•CE•AB=×8.2×8=32.8(平方單位).
(另法:過E作EO⊥AC于O,由Rt△ABC∽Rt△EOC可求得EO).

(2)由題意可得△DAP≌△D′AP,
∴AD′=AD=10,PD′=DP=x.
在Rt△ABD′中,∵AB=8,∴BD′==6,于是CD′=4.
在Rt△PCD′中,由x2=42+(8-x)2,得x=5.
此時y=•AD•DP=×10×5=25(平方單位).
表明當DP=5時,點D恰好落在BC邊上,這時y=25.
(另法:由Rt△ABD′∽Rt△PCD′可求得DP).

(3)由(2)知,DP=5是甲,丙兩種情形的分界點.
當0≤x≤5時,由圖甲知y=S△ADP=S△ADP=•AD•DP=5x.
當5<x<8時,如圖丙,設∠DAP=α,則∠AEB=2α,∠FPC=2α.
在Rt△ADP中,得tanα=
根據(jù)閱讀材料,即,得出tan2α=
在Rt△ABE中,有BE=AB∕tan2α==
同理,在Rt△PCF中,有CF=(8-x)tan2α=
∴S△ABE=•AB•BE=×8×=
S△PCF=•PC•CF=(8-x)×=
而S梯形ABCP=(PC+AB)×BC=(8-x+8)×10=80-5x.
故重疊部分的面積y=S梯形ABCP-S△ABE-S△PCF=80-5x--
經(jīng)驗證,當x=8時,y=32.8適合上式.
綜上所述,當0≤x≤5時,y=5x;當5<x≤8時,y=80-5x--
點評:此題要能夠結(jié)合矩形的性質(zhì)和折疊的性質(zhì)發(fā)現(xiàn)對應的角相等和對應的線段相等,熟練運用勾股定理列方程求解.能夠分情況討論重疊部分的面積.難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(11)(解析版) 題型:解答題

(2008•綿陽)如圖,⊙O的直徑AB為10cm,弦AC為6cm,∠ACB的平分線交AB于E,交⊙O于D.求弦AD,CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《圓》(06)(解析版) 題型:填空題

(2008•綿陽)如圖,AB是圓O的直徑,弦AC、BD相交于點E,且AC=BD,若∠BEC=60°,C是的中點,則tan∠ACD=   

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《三角形》(07)(解析版) 題型:填空題

(2008•綿陽)如圖是由若干個邊長為1的小正方形組成的網(wǎng)格,在圖中作出將五角星ABCDE向其東北方向平移個單位的圖形.
   

查看答案和解析>>

科目:初中數(shù)學 來源:2008年四川省綿陽市中考數(shù)學試卷(解析版) 題型:選擇題

(2008•綿陽)如圖,O是邊長為1的正△ABC的中心,將△ABC繞點O逆時針方向旋轉(zhuǎn)180°,得△A1B1C1,則△A1B1C1與△ABC重疊部分(圖中陰影部分)的面積為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案