【題目】宿州市高新區(qū)某電子電路板廠到安徽大學(xué)從2018年應(yīng)屆畢業(yè)生中招聘公司職員,對應(yīng)聘者的專業(yè)知識、英語水平、參加社會實(shí)踐與社團(tuán)活動等三項(xiàng)進(jìn)行測試或成果認(rèn)定,三項(xiàng)的得分滿分都為100分,三項(xiàng)的分?jǐn)?shù)分別按532的比例記入每人的最后總分,有4位應(yīng)聘者的得分如下表所示.

項(xiàng)目

專業(yè)知識

英語水平

參加社會實(shí)踐與

社團(tuán)活動等

85

85

90

85

85

70

80

90

70

90

90

50

(1)分別算出4位應(yīng)聘者的總分;

(2)表中四人專業(yè)知識的平均分為85分,方差為12.5,四人英語水平的平均分為87.5分,方差為6.25,請你求出四人參加社會實(shí)踐與社團(tuán)活動等的平均分及方差;

(3)分析(1)和(2)中的有關(guān)數(shù)據(jù),你對大學(xué)生應(yīng)聘者有何建議?

【答案】(1)86,82,81,82;(2)見解析;(3)見解析.

【解析】

(1)根據(jù)加權(quán)平均數(shù)的計(jì)算公式列出算式,再進(jìn)行計(jì)算即可;
(2)根據(jù)平均數(shù)的計(jì)算公式先算出平均數(shù),再根據(jù)方差公式進(jìn)行計(jì)算即可;
(3)根據(jù)(1)(2)得出的結(jié)論和實(shí)際情況分別寫出合理的建議即可.

(1)應(yīng)聘者A總分為85×50%+85×30%+90×20%=86分;

應(yīng)聘者B總分為85×50%+85×30%+70×20%=82分;

應(yīng)聘者C總分為80×50%+90×30%+70×20%=81分;

應(yīng)聘者D總分為90×50%+90×30%+50×20%=82分;


(2)4位應(yīng)聘者的專業(yè)知識測試的平均分?jǐn)?shù)=(85+85+80+90)÷4=85分,

方差為:S21= ×[(8585)2+(8585)2+(8085)2+(9085)2]=12.5,

4位應(yīng)聘者的英語水平測試的平均分?jǐn)?shù)=(85+85+90+90)÷4=87.5分,

方差為:S22= ×2.52×4=6.25.

4位應(yīng)聘者參加社會實(shí)踐與社團(tuán)活動等的平均分?jǐn)?shù)為=(90+70+70+50)÷4=70分,

方差為:S23= [(9070)2+(7070)2+(7070)2+(5070)2]=200;


(3)對于應(yīng)聘者的專業(yè)知識、英語水平的差距不大,但參加社會實(shí)踐與社團(tuán)活動等方面的差距較大,影響學(xué)生的最后成績,將影響學(xué)生就業(yè)。學(xué)生不僅注重自己的文化知識的學(xué)習(xí),更應(yīng)注重社會實(shí)踐與社團(tuán)活動的開展,從而促進(jìn)學(xué)生綜合素質(zhì)的提升。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(8,0)和點(diǎn)B(0,6),點(diǎn)C是AB的中點(diǎn),點(diǎn)P在折線AOB上,直線CP截△AOB,所得的三角形與△AOB相似,那么點(diǎn)P的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,己知函數(shù)y=﹣x+4的圖象與坐標(biāo)軸的交點(diǎn)分別為點(diǎn)A、B,點(diǎn)C與點(diǎn)B關(guān)于x軸對稱,動點(diǎn)P、Q分別在線段BC、AB上(點(diǎn)P不與點(diǎn)B、C重合).且APQ=ABO

(1)點(diǎn)A的坐標(biāo)為 ,AC的長為 ;

(2)判斷BPQCAP的大小關(guān)系,并說明理由;

(3)當(dāng)APQ為等腰三角形時,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.

小聰把△ABE繞點(diǎn)A逆時針旋轉(zhuǎn)90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.
(1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;

(2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動點(diǎn)M沿路線O→A→C運(yùn)動.

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)當(dāng)OMC的面積是OAC的面積的時,求出這時點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:

例如,若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為

(問題情境)

在數(shù)軸上,點(diǎn)表示的數(shù)為-20,點(diǎn)表示的數(shù)為10,動點(diǎn)從點(diǎn)出發(fā)沿數(shù)軸正方向運(yùn)動,同時,動點(diǎn)也從點(diǎn)出發(fā)沿數(shù)軸負(fù)方向運(yùn)動,已知運(yùn)動到4秒鐘時,、兩點(diǎn)相遇,且動點(diǎn)運(yùn)動的速度之比是(速度單位:單位長度/秒).

備用圖

(綜合運(yùn)用)

1)點(diǎn)的運(yùn)動速度為______單位長度/秒,點(diǎn)的運(yùn)動速度為______單位長度/秒;

2)當(dāng)時,求運(yùn)動時間;

3)若點(diǎn)、在相遇后繼續(xù)以原來的速度在數(shù)軸上運(yùn)動,但運(yùn)動的方向不限,我們發(fā)現(xiàn):隨著動點(diǎn)、的運(yùn)動,線段的中點(diǎn)也隨著運(yùn)動.問點(diǎn)能否與原點(diǎn)重合?若能,求出從、相遇起經(jīng)過的運(yùn)動時間,并直接寫出點(diǎn)的運(yùn)動方向和運(yùn)動速度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關(guān)系.

1)如圖1,若ABCD,點(diǎn)PAB、CD內(nèi)部,B=50°,D=30°,求BPD

2)如圖2,將點(diǎn)P移到AB、CD外部,則BPD、B、D之間有何數(shù)量關(guān)系?(不需證明)

3)如圖3,寫出BPDBDBQD之間的數(shù)量關(guān)系?請證明你的結(jié)論.

4)如圖4,求出A+B+C+D+E+F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數(shù)y= x2+bx+c的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求該二次函數(shù)的解析式;
(2)設(shè)該拋物線的頂點(diǎn)為D,求△ACD的面積(請?jiān)趫D1中探索);
(3)若點(diǎn)P,Q同時從A點(diǎn)出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運(yùn)動,其中一點(diǎn)到達(dá)端點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,當(dāng)P,Q運(yùn)動到t秒時,△APQ沿PQ所在的直線翻折,點(diǎn)A恰好落在拋物線上E點(diǎn)處,請直接判定此時四邊形APEQ的形狀,并求出E點(diǎn)坐標(biāo)(請?jiān)趫D2中探索).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+2,善于思考的小明進(jìn)行了以下探索:

設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn

∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分a+b的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當(dāng)a、b、m、n均為正整數(shù)時,若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=   ,b=   ;

(2)試著把7+4化成一個完全平方式.

(3)若a是216的立方根,b是16的平方根,試計(jì)算:

查看答案和解析>>

同步練習(xí)冊答案