【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點(diǎn)D,則下列結(jié)論中①BC=BD=AD;②S△ABD:S△BCD=AD:DC;③BC2=CDAC;④若AB=2,則BC=﹣1,其中正確的結(jié)論的個(gè)數(shù)是_____個(gè).
【答案】4
【解析】
在△ABC,AB=AC,∠A=36°,BD平分∠ABC交AC于點(diǎn)D,可推出△BCD,△ABD為等腰三角形,可得AD=BD=BC,①正確;由三角形的面積公式得出②正確;利用三角形相似的判定與性質(zhì)得出③④正確,即可得出結(jié)果.
①由AB=AC,∠A=36°,得∠ABC=∠C=72°,
又BD平分∠ABC交AC于點(diǎn)D,
∴∠ABD=∠CBD=∠ABC=36°=∠A,
∴AD=BD,
∠BDC=∠ABD+∠A=72°=∠C,
∴BC=BD,
∴BC=BD=AD,
∴①正確;
②△ABD與△BCD在AC邊上的高相等,
故△ABD與△BCD的面積比等于對(duì)應(yīng)底邊的比,
∴②正確;
③由①的條件可證△BCD∽△ACB,
則BC:AC=CD:BC,
∴BC2=CDAC,
∴③正確;
④設(shè)BC=x,則AC=AB=2,CD=AC﹣AD=2﹣x,
由BC2=CDAC,得x2=(2﹣x)2,
解得x=±﹣1(舍去負(fù)值),
∴BC=﹣1,
∴④正確.
正確的有4個(gè),
故答案為:4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y= (x<0)的圖象相交于點(diǎn)A(-1,2)、點(diǎn)B(-4,n).
(1)求此一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)在x軸上存在一點(diǎn)P,使△PAB的周長(zhǎng)最小,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑的⊙O經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)P,D是⊙O上于點(diǎn),且弧BC=弧CD,弦AD的延長(zhǎng)線交切線PC于點(diǎn)E,連接AC.
(1)求∠E的度數(shù);
(2)若⊙O的直徑為5,sinP=,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把兩條中線互相垂直的三角形稱為“中垂三角形”.例如圖1,圖2,圖3中,AF,BE是△ABC的中線,AF⊥BE,垂足為P.像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
特例探索
(1)①如圖1,當(dāng)∠ABE=45°,c=2時(shí),a= ,b= ;
②如圖2,當(dāng)∠ABE=30°,c=4時(shí),求a和b的值.
歸納證明
(2)請(qǐng)你觀察(1)中的計(jì)算結(jié)果,猜想三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你發(fā)現(xiàn)的關(guān)系式.
(3)利用(2)中的結(jié)論,解答下列問(wèn)題:
在邊長(zhǎng)為3的菱形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),E,F分別為線段AO,DO的中點(diǎn),連接BE,CF并延長(zhǎng)交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖4所示,求MG2+MH2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠MON=30°,B為OM上一點(diǎn),BA⊥ON于A,四邊形ABCD為正方形,P為射線BM上一動(dòng)點(diǎn),連結(jié)CP,將CP繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)90°得CE,連結(jié)BE,若AB=4,則BE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】右圖為手的示意圖,在各個(gè)手指間標(biāo)記字母A、B、C、D.請(qǐng)你按圖中箭頭所指方向(即ABCDCBABC…的方式)從A開(kāi)始數(shù)連續(xù)的正整數(shù)1,2,3,4…,當(dāng)數(shù)到12時(shí),對(duì)應(yīng)的字母是 ;當(dāng)字母C第201次出現(xiàn)時(shí),恰好數(shù)到的數(shù)是 ;當(dāng)字母C第2n+1次出現(xiàn)時(shí)(n為正整數(shù)),恰好數(shù)到的數(shù)是 (用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠A=Rt∠,AB=4,AE=2,點(diǎn)C在線段AE上運(yùn)動(dòng)(不與點(diǎn)A點(diǎn)E重合),過(guò)點(diǎn)E作ED⊥BC交BC的延長(zhǎng)線于D,則的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫(xiě)出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)點(diǎn)和點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P為其頂點(diǎn),對(duì)稱軸l與x軸交于點(diǎn)D,拋物線上C、E兩點(diǎn)關(guān)于對(duì)稱軸l對(duì)稱.
求拋物線的函數(shù)表達(dá)式;
點(diǎn)G是線段OC上一動(dòng)點(diǎn),是否存在這樣的點(diǎn)G,使與相似,若存在,請(qǐng)求出點(diǎn)G坐標(biāo),若不存在請(qǐng)說(shuō)明理由.
平移拋物線,其頂點(diǎn)P在直線上運(yùn)動(dòng),移動(dòng)后的拋物線與直線的另一交點(diǎn)為M,與原對(duì)稱軸l交于點(diǎn)Q,當(dāng)是以PM為直角邊的直角三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com