【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(2,0),等邊三角形AOC經(jīng)過平移或軸對稱或旋轉(zhuǎn)都可以得到△OBD.
(1)△AOC沿x軸向右平移得到△OBD,則平移的距離是___個(gè)單位長度;△AOC與△BOD關(guān)于直線對稱,則對稱軸是___;△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)得到△DOB,則旋轉(zhuǎn)角度可以是___度;
(2)連結(jié)AD,交OC于點(diǎn)E,求∠AEO的度數(shù)。
【答案】(1)△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120得到△DOB(2) 2;y軸;120
【解析】試題分析:(1)由點(diǎn)A的坐標(biāo)為(-2,0),得OA=2,根據(jù)平移的性質(zhì)得到△AOC沿x軸向右平移2個(gè)單位得到△OBD;OA=OB,則△AOC與△BOD關(guān)于y軸對稱;根據(jù)等邊三角形的性質(zhì)得∠AOC=∠BOD=60°,則∠AOD=120°,根據(jù)旋轉(zhuǎn)的定義得△AOC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)120°得到△DOB;
(2)先求出∠COD=60°,進(jìn)而得出∠AOC=∠DOC,又OA=OD,根據(jù)等腰三角形的三線合一即可得出OC⊥AD,進(jìn)而得出∠AEO=90°.
試題解析:
(1)2,y軸,120°;
(2)∵∠COD=180°-60°-60°=60°
∴∠AOC=∠DOC,
又OA=OD,
∴OC⊥AD,
∴∠AEO=90°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三地海拔高度分別為100米,50米,-30米,則最高地方比最低地方高( )
A.50米B.70米C.80米D.130米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地探空氣球的氣象觀測資料表明,高度每增加1千米,氣溫下降大約5℃,若該地區(qū)地面溫度為23℃,該地區(qū)高空某點(diǎn)溫度為-27℃,則此點(diǎn)的高度是大約是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A.過一點(diǎn)有兩條直線與這條直線垂直
B.兩點(diǎn)之間線段最短
C.如果一條射線把一個(gè)角分成兩個(gè)角,那么這條射線叫角的平分線
D.過直線外一點(diǎn)可以有兩條直線與這條直線平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】郵遞員騎車從郵局出發(fā),先向南騎行2km到達(dá)A村,繼續(xù)向南騎行3km到達(dá)B村,然后向北騎行9km到C村,最后回到郵局.
(1)以郵局為原點(diǎn),以向北方向?yàn)檎较�,�?/span>1cm表示1km,畫出數(shù)軸,并在該數(shù)軸上表示出A、B、C三個(gè)村莊的位置;
(2)C村離A村有多遠(yuǎn)?
(3)郵遞員一共騎了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=4,AC=6,點(diǎn)D、E分別是BC.AD的中點(diǎn),AF∥BC交CE的延長線于F.則四邊形AFBD的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:[(x-3y)(x+3y)+(3y-x)2]÷(-2x);
(2)計(jì)算:(2x﹣3)2﹣6x(x﹣2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國首艘國產(chǎn)航母于2018年4月26日正式下水,排水量約為65000噸,將65000科學(xué)記數(shù)法表示為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為5的⊙O中,弦AB=8,P是弦AB所對的優(yōu)弧上的動點(diǎn),連接AP,過點(diǎn)A作AP的垂線交射線PB于點(diǎn)C,當(dāng)△PAB是等腰三角形時(shí),線段BC的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com