【題目】近年來,青少年中的近視眼和肥胖案例日趨增多,人們普遍意識到健康的身體是學(xué)習(xí)的保障,所以體育活動越來越受重視.某商店分兩次購進跳繩和足球兩種商品進行銷售,每次購進同一種商品的進價相同,具體情況如下表所示.

購進數(shù)量()

購進所需費用()

跳繩

足球

第一次

30

40

3800

第二次

40

30

3200

(1)跳繩和足球兩種商品每件的進價分別是多少元?

(2)商店計劃用5300元的資金進行第三次進貨,共購進跳繩和足球兩種商品100件,其中要求足球的數(shù)量不少于跳繩的數(shù)量,有哪幾種進貨方案?

【答案】(1)每根跳繩的進價為20元,每個足球的進價為80元;(2)共有以下6種進貨方案,具體方案見解析.

【解析】

1)設(shè)跳繩的進價為x元,足球的進價為y元,根據(jù)前兩次進貨的數(shù)量及總價,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;

2)設(shè)購進跳繩m根,則購進足球(100-m)個,由B商品的數(shù)量不少于A商品的數(shù)量且總價不超過5300元,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍,結(jié)合m為整數(shù)即可得出各進貨方案.

(1)設(shè)每根跳繩的進價為元,每個足球的進價為.

依題意,得解得

答:每根跳繩的進價為20元,每個足球的進價為80.

(2)設(shè)購進跳繩根,則購進足球.

,得,由,得,則有.

為整數(shù),∴的值可能為45,4647,48,4950,

∴共有以下6種進貨方案:

方案一:購進跳繩45根,則購進足球55個.

方案二:購進跳繩46根,則購進足球54個.

方案三:購進跳繩47根,則購進足球53個.

方案四:購進跳繩48根,則購進足球52個.

方案五:購進跳繩49根,則購進足球51個.

方案六:購進跳繩50根,則購進足球50個.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EAB上一點,FAD延長線上一點,且DF=BE

1)求證:CE=CF

2)若點GAD上,且∠GCE=45°,則GE=BE+GD成立嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個幾何體的三視圖.

(1)寫出該幾何體的名稱,并根據(jù)所示數(shù)據(jù)計算這個幾何體的表面積;

(2)如果一只螞蟻要從這個幾何體中的點B出發(fā),沿表面爬到AC的中點D,請你求出這個線路的最短路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知射線OC上的任意一點到AOB的兩邊的距離都相等,點DE、F分別為邊OCOA、OB上,如果要想證得OE=OF,只需要添加以下四個條件中的某一個即可,請寫出所有可能的條件的序號__________

①∠ODE=ODF;②∠OED=OFD;ED=FD;EFOC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市舉行“第十七屆中小學(xué)生書法大賽”作品比賽,已知每幅參賽作品成績記為,組委會從1000幅書法作品中隨機抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制成如下統(tǒng)計圖表.

分數(shù)段

頻數(shù)

百分比

38

0.38

0.32

10

0.1

合計

100

1

書法作品比賽成績頻數(shù)直方圖

根據(jù)上述信息,解答下列問題:

(1)請你把表中空白處的數(shù)據(jù)填寫完整.

(2)請補全書法作品比賽成績頻數(shù)直方圖.

(3)80(80)以上的書法作品將被評為等級獎,試估計全市獲得等級的幅數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于A、B兩點(點A在點B的左側(cè)),B的坐標(biāo)為(3,0),軸交于點C(0,-3),頂點為D

(1)求拋物線的解析式及頂點D的坐標(biāo)

(2)聯(lián)結(jié)AC,BC求∠ACB的正切值

(3)點Px軸上一點,是否存在點P使得PBDCAB相似,若存在,請求出點P的坐標(biāo);若不存在,請說明理由

(4)M是拋物線上一點,N是否存在點N,使得以點A,CM,N為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,體育場內(nèi)一看臺與地面所成夾角為30°,看臺最低點A到最高點B的距離為10,A,B兩點正前方有垂直于地面的旗桿DE.在A,B兩點處用儀器測量旗桿頂端E的仰角分別為60°15°(仰角即視線與水平線的夾角)

1)求AE的長;

2)已知旗桿上有一面旗在離地1米的F點處,這面旗以0.5/秒的速度勻速上升,求這面旗到達旗桿頂端需要多少秒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點A、B,且與經(jīng)過點C(2,0)的一次函數(shù)y=kx+b的圖象相交于點D,點D的橫坐標(biāo)為4,直線CDy軸相交于點E

(1)直線CD的函數(shù)表達式為______;(直接寫出結(jié)果)

(2)x軸上求一點P使△PAD為等腰三角形,直接寫出所有滿足條件的點P的坐標(biāo).

(3)若點Q為線段DE上的一個動點,連接BQ.點Q是否存在某個位置,將△BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的y軸上?若存在,求點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtΔABC中,∠B=90°,∠A=30°,DE垂直平分AC,AC于點E,AB于點D,連接CD,BD=2,AD的長是___.

查看答案和解析>>

同步練習(xí)冊答案