割圓術(shù)是我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)造的一種求周長(zhǎng)和面積的方法:隨著圓內(nèi)接正多邊形邊數(shù)的增加,它的周長(zhǎng)和面積越來(lái)越接近圓周長(zhǎng)和圓面積,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”.試用這個(gè)方法解決問(wèn)題:如圖,⊙的內(nèi)接多邊形周長(zhǎng)為3,⊙O的外切多邊形周長(zhǎng)為3.4,則下列各數(shù)中與此圓的周長(zhǎng)最接近的是( )

A.
B.
C.
D.
【答案】分析:根據(jù)圓外切多邊形的周長(zhǎng)大于圓周長(zhǎng),圓內(nèi)接多邊形的周長(zhǎng)小于圓周長(zhǎng).圓的內(nèi)接多邊形周長(zhǎng)為3,外切多邊形周長(zhǎng)為3.4,所以圓周長(zhǎng)在3與3.4之間,然后把3與3.4平方,再利用夾逼法對(duì)即可選擇答案.
解答:解:圓外切多邊形的周長(zhǎng)大于圓周長(zhǎng),圓內(nèi)接多邊形的周長(zhǎng)小于圓周長(zhǎng).
圓的內(nèi)接多邊形周長(zhǎng)為3,外切多邊形周長(zhǎng)為3.4,所以圓周長(zhǎng)在3與3.4之間.
∵32=9,3.42=11.56,
<圓的周長(zhǎng)<,
只有只有C選項(xiàng)滿(mǎn)足條件.
故選:C.
點(diǎn)評(píng):此題主要考查了圓的性質(zhì)與無(wú)理數(shù)的估算,關(guān)鍵是知道圓外切多邊形的周長(zhǎng)大于圓周長(zhǎng),圓內(nèi)接多邊形的周長(zhǎng)小于圓周長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

割圓術(shù)是我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)造的一種求周長(zhǎng)和面積的方法:隨著圓內(nèi)接正多邊形邊數(shù)的增加,它的周長(zhǎng)和面積越來(lái)越接近圓周長(zhǎng)和圓面積,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”.劉徽就是大膽地應(yīng)用了以直代曲、無(wú)限趨近的思想方法求出了圓周率.請(qǐng)你也用這個(gè)方法求出二次函數(shù)y=
1
4
(x-4)2
的圖象與兩坐標(biāo)軸所圍成的圖形最接近的面積是( 。
A、5
B、
22
5
C、4
D、17-4π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•北侖區(qū)二模)割圓術(shù)是我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)造的一種求周長(zhǎng)和面積的方法:隨著圓內(nèi)接正多邊形邊數(shù)的增加,它的周長(zhǎng)和面積越來(lái)越接近圓周長(zhǎng)和圓面積,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”.試用這個(gè)方法解決問(wèn)題:如圖,⊙的內(nèi)接多邊形周長(zhǎng)為3,⊙O的外切多邊形周長(zhǎng)為3.4,則下列各數(shù)中與此圓的周長(zhǎng)最接近的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年四川省內(nèi)江市中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

割圓術(shù)是我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)造的一種求周長(zhǎng)和面積的方法:隨著圓內(nèi)接正多邊形邊數(shù)的增加,它的周長(zhǎng)和面積越來(lái)越接近圓周長(zhǎng)和圓面積,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”.試用這個(gè)方法解決問(wèn)題:如圖,⊙的內(nèi)接多邊形周長(zhǎng)為3,⊙O的外切多邊形周長(zhǎng)為3.4,則下列各數(shù)中與此圓的周長(zhǎng)最接近的是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年數(shù)學(xué)參賽試卷2010.3吳(解析版) 題型:選擇題

割圓術(shù)是我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)造的一種求周長(zhǎng)和面積的方法:隨著圓內(nèi)接正多邊形邊數(shù)的增加,它的周長(zhǎng)和面積越來(lái)越接近圓周長(zhǎng)和圓面積,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”.劉徽就是大膽地應(yīng)用了以直代曲、無(wú)限趨近的思想方法求出了圓周率.請(qǐng)你也用這個(gè)方法求出二次函數(shù)的圖象與兩坐標(biāo)軸所圍成的圖形最接近的面積是( )
A.5
B.
C.4
D.17-4π

查看答案和解析>>

同步練習(xí)冊(cè)答案