【題目】已知:如圖,點(diǎn)C在∠AOB的一邊OA上,過(guò)點(diǎn)C的直線(xiàn)DEOB,CF平分∠ACDCGCF于點(diǎn)C

(1)若∠O40°,求∠ECF的度數(shù);

(2)求證:CG平分∠OCD

【答案】(1)ECF110°;(2)證明見(jiàn)解析.

【解析】

1)根據(jù)平行線(xiàn)的性質(zhì)和角平分線(xiàn)的性質(zhì),可以求得∠ECF的度數(shù);
2)根據(jù)角平分線(xiàn)的性質(zhì)、平角的定義可以求得∠OCG和∠DCG的關(guān)系,從而可以證明結(jié)論成立.

(1)∵直線(xiàn)DEOB,CF平分∠ACD,∠O40°,

∴∠ACE=∠O,∠ACF=∠FCD,

∴∠ACE40°

∴∠ACD140°,

∴∠ACF70°,

∴∠ECF=∠ECA+ACF40°+70°110°;

(2)證明:∵CF平分∠ACD,CGCF,∠ACD+OCD180°

∴∠ACF=∠FCD,∠FCG90°

∴∠FCD+DCG90°,∠ACF+OCG90°,

∴∠DCG=∠OCG,

CG平分∠OCD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(發(fā)現(xiàn)問(wèn)題)愛(ài)好數(shù)學(xué)的小強(qiáng)在做作業(yè)時(shí)碰到這樣的一道題目:如圖①,在△ABC中,AB8,AC6,EBC中點(diǎn),求AE的取值范圍.

(解決問(wèn)題)

1)小強(qiáng)經(jīng)過(guò)多次的嘗試與探索,終于得到解題思路:在圖①中,作AB邊上的中點(diǎn)F,連接EF,構(gòu)造出△ABC的中位線(xiàn)EF,請(qǐng)你完成余下的求解過(guò)程.

(靈活運(yùn)用)

2)如圖②,在四邊形ABCD中,AB8,CD6,E、F分別為BCAD中點(diǎn),求EF的取值范圍.

3)變式:把圖②中的AD、C變成在一直線(xiàn)上時(shí),如圖③,其它條件不變,則EF的取值范圍為

(遷移拓展)

4)如圖④,在△ABC中,∠A60°,AB4,EBC邊的中點(diǎn),FAC邊上一點(diǎn)且EF正好平分△ABC的周長(zhǎng),則EF=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)A種產(chǎn)品,它的成本是6/件,售價(jià)是8/件,年銷(xiāo)售量為5萬(wàn)件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x萬(wàn)元,產(chǎn)品的年銷(xiāo)售量將是原銷(xiāo)售量的y倍,且yx之間滿(mǎn)足我們學(xué)過(guò)的二種函數(shù)(即一次函數(shù)和二次函數(shù))關(guān)系中的一種,它們的關(guān)系如下表:

x(萬(wàn)元

0

0.5

1

1.5

2

y

1

1.275

1.5

1.675

1.8

(1)求yx的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍)

(2)如果把利潤(rùn)看作是銷(xiāo)售總額減去成本費(fèi)用和廣告費(fèi)用,試求出年利潤(rùn)W(萬(wàn)元)與廣告費(fèi)用x(萬(wàn)元)的函數(shù)關(guān)系式,并計(jì)算每年投入的廣告費(fèi)是多少萬(wàn)元時(shí)所獲得的利潤(rùn)最大?

(3)如果公司希望年利潤(rùn)W(萬(wàn)元)不低于14萬(wàn)元,請(qǐng)你幫公司確定廣告費(fèi)的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線(xiàn)AB上一點(diǎn),過(guò)O點(diǎn)作射線(xiàn)OC,使,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線(xiàn)OA上,另一邊OM在直線(xiàn)AB的下方.

1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖2的位置,使得ON落在射線(xiàn)OB上,此時(shí)三角板旋轉(zhuǎn)的角度為______度;

2)在(1)旋轉(zhuǎn)過(guò)程中,當(dāng)旋轉(zhuǎn)至圖3的位置時(shí),使得OM在∠BOC的內(nèi)部,ON落在直線(xiàn)AB下方,試探究∠COM與∠BON之間滿(mǎn)足什么等量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在RtABC中,∠ACB90°ACBC,點(diǎn)DBC的中點(diǎn),CEAD,垂足為點(diǎn)EBFACCE的延長(zhǎng)線(xiàn)于點(diǎn)F

求證:AC2BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列語(yǔ)句中正確的有(

經(jīng)過(guò)一點(diǎn),有且只有一條直線(xiàn)與已知直線(xiàn)平行;有公共頂點(diǎn)且和為的兩個(gè)角是鄰補(bǔ)角;兩條直線(xiàn)被第三條直線(xiàn)所截,同旁?xún)?nèi)角互補(bǔ);不相交的兩條直線(xiàn)叫做平行線(xiàn);直線(xiàn)外的一點(diǎn)到已知直線(xiàn)的垂線(xiàn)段叫做點(diǎn)到直線(xiàn)的距離;

A.0個(gè);B.1個(gè);C.2個(gè);D.3個(gè);

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BEAO,

解:因?yàn)?/span>BEAO.(已知)

所以

因?yàn)?/span>,(已知

所以 .(等量代換)

.(等式性質(zhì))

因?yàn)?/span> ,(已求)

所以 .(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,過(guò)對(duì)角線(xiàn)BD的中點(diǎn)O作直線(xiàn)EF,分別交DA的延長(zhǎng)線(xiàn),AB, DC,BC的延長(zhǎng)線(xiàn)于點(diǎn)EMN,F

1)求證:△ODE≌△OBF

2)除(1)中這對(duì)全等三角形外,再寫(xiě)出兩對(duì)全等三角形(不需要證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,Aa0),C0c)且滿(mǎn)足:,長(zhǎng)方形ABCO在坐標(biāo)系中(如圖)點(diǎn)O為坐標(biāo)系的原點(diǎn)。

1)求點(diǎn)B的坐標(biāo)。

2)如圖1,若點(diǎn)M從點(diǎn)A出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng)(不超過(guò)點(diǎn)0),點(diǎn)N從原點(diǎn)O出發(fā),以1個(gè)單位/秒的速度向下運(yùn)動(dòng)(不超過(guò)點(diǎn)C),設(shè)MN兩點(diǎn)同時(shí)出發(fā),在它們運(yùn)動(dòng)的過(guò)程中,四邊形MBNO的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍。

3)如圖2Ex軸負(fù)半軸上一點(diǎn),且Fx軸正半軸上一動(dòng)點(diǎn),∠ECF的平分線(xiàn)CDBE的延長(zhǎng)線(xiàn)于點(diǎn)D,在點(diǎn)F運(yùn)動(dòng)的過(guò)程中,請(qǐng)?zhí)骄俊?/span>CFE與∠D的數(shù)量關(guān)系并說(shuō)明理由。

(注:三角形三個(gè)內(nèi)角的和等于

查看答案和解析>>

同步練習(xí)冊(cè)答案