二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:
(1)不等式ax2+bx+c>0的解集為
1<x<3
1<x<3

(2)若y隨x的增大而減小,則自變量x的取值范圍是
x>2
x>2

(3)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍是
k<2
k<2
分析:(1)看x軸上方的二次函數(shù)的圖象相對應的x的范圍即可;
(2)在對稱軸的右側即為y隨x的增大而減;
(3)得到相對應的函數(shù)看是怎么平移得到的即可.
解答:解:(1)依題意因為ax2+bx+c>0,得出x的取值范圍為:1<x<3;

(2)如圖可知,當y隨x的增大而減小,自變量x的取值范圍為:x>2;

(3)由頂點(2,2)設方程為a(x-2)2+2=0,
∵二次函數(shù)與x軸的2個交點為(1,0),(3,0),
∴a=-2,
∴拋物線方程為y=-2(x-2)2+2,
y=-2(x-2)2+2-k實際上是原曲線下移k個單位,
由圖形知,當k<2時,曲線與x軸有兩個交點.
故k<2.
故答案為:(1)1<x<3;(2)x>2;(3)k<2.
點評:本題考查的是二次函數(shù)的圖象與實際應用的綜合題;采用數(shù)形結合的方法可使問題簡化是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網(wǎng)點C(0,
3
)
,當x=-4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實數(shù)a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

二次函數(shù)y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案