【題目】請用尺規(guī)作出符合下列要求的點(不寫作法,保留作圖痕跡).
(1)在圖①中的的內(nèi)部作出一點,使得;
(2)在圖②中的的外部作出一點,使得.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點C順時針旋轉(zhuǎn)90°,得到△A1B1C,連接AA1,若∠AA1B1=15°,則∠B的度數(shù)是( )
A. 75° B. 60° C. 50° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用周長為30米的籬笆圍成.已知墻長為米,設(shè)苗圃園垂直于墻的一邊長為米,苗圃園的面積為平方米.
(1)直接寫出與的函數(shù)關(guān)系式;
(2)若,求的取值范圍;
(3)當時,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+5與反比例函數(shù)y2=的圖象交于A(1,m)、B(4,n)兩點.
(1)求A、B兩點的坐標和反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,拋物線經(jīng)過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點M.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最小?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知拋物線(0≤x≤3)在x軸上方的部分,記作C1,它與x軸交于點O,A1,將C1繞點A1旋轉(zhuǎn)180°得C2,C2與x 軸交于另一點A2.請繼續(xù)操作并探究:將C2繞點A2旋轉(zhuǎn)180°得C3,與x 軸交于另一點A3;將C3繞點A2旋轉(zhuǎn)180°得C4,與x 軸交于另一點A4,這樣依次得到x軸上的點A1,A2,A3,…,An,…,及拋物線C1,C2,…,Cn,….則點A4的坐標為 ;Cn的頂點坐標為 (n為正整數(shù),用含n的代數(shù)式表示) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=k1x+,且k1k2≠0,自變量x與函數(shù)值y滿足以下表格:
x | …… | -4 | -3 | -2 | -1 | - | 1 | 2 | 3 | 4 | …… | |
y | …… | -3 | -2 | -1 | 0 | 1 | -1 | 0 | 1 | m | n | …… |
(1)根據(jù)表格直接寫出y與x的函數(shù)表達式及自變量x的取值范圍______
(2)補全上面表格:m=______,n=______;在如圖所示的平面直角坐標系中,請根據(jù)表格中的數(shù)據(jù)補全y關(guān)于x的函數(shù)圖象;
(3)結(jié)合函數(shù)圖象,解決下列問題:
①寫出函數(shù)y的一條性質(zhì):______;
②當函數(shù)值y≥時,x的取值范圍是______;
③當函數(shù)值y=-x時,結(jié)合圖象請估算x的值為______(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“甲型H1N1”,某校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內(nèi)空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:
(1)藥物燃燒時,求y關(guān)于x的函數(shù)關(guān)系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關(guān)系式呢?
(2)研究表明,當空氣中每立方米的含藥量低于1.6mg時,生方可進教室,那么從消毒開始,至少需要幾分鐘后,生才能進入教室?
(3)研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com