【題目】已知,四邊形ABCD是長方形,F(xiàn)是DA延長線上一點(diǎn),CF交AB于點(diǎn)E,G是CF上一點(diǎn),且AG=AC,∠ACG=2∠GAF.
(1)若∠ACB=60°,求∠ECB的度數(shù).
(2)若AF=12cm,AG=6.5cm,求△AEF中EF邊上的高?
【答案】
(1)解:∵四邊形ABCD是長方形,
∴DF∥BC,
∴∠AFC=∠ECB,
∵AC=AG,
∴∠ACG=∠AGC,
∵∠ACG=2∠GAF,∠AGC=∠GAF+∠F,
∴∠F=∠FAG,
∴∠ACG=2∠ECB,
∴∠ACB=∠ACG+∠ECB=3∠ECB=60°,
∴∠ECB=20°;
(2)解:設(shè)△AEF中EF邊上的高為hcm,
∵∠F=∠FAG,
∴AG=GF,
∵∠BAF=90°,
∴∠EAG+∠GAF=90°,∠AEF+∠EFA=90°,
∴∠EAG=∠AEG,
∴EG=AG=GF,
∴EF=2AG=2×6.5=13(cm),
∴AE= =5(cm),
∵△AEF的面積= AEAF= EFh,
解得:h= cm,
即△AEF中EF邊上的高為 cm.
【解析】(1)可利用平行線的性質(zhì),內(nèi)錯(cuò)角相等可轉(zhuǎn)化∠ECB=∠AFC,再由“AG=AC,∠ACG=2∠GAF”得出∠F=∠FAG,進(jìn)而得出∠ACB=∠ACG+∠ECB=3∠ECB=60°,最后求出∠ECB的度數(shù);(2)可證出EG=AG=GF,由勾股定理求出AE,再由面積法,即△AEF的面積= AEAF= EFh,求出h.
【考點(diǎn)精析】掌握三角形的面積和等腰三角形的性質(zhì)是解答本題的根本,需要知道三角形的面積=1/2×底×高;等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠四月份生產(chǎn)零件50萬個(gè),已知五、六月份平均每月的增長率是20%,則第二季度共生產(chǎn)零件_____萬個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為⊙的直徑,為的中點(diǎn),連接交弦于點(diǎn).過點(diǎn)作,交的延長線于點(diǎn).
(1)求證:是⊙的切線;
(2)連接,若,求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根據(jù)這個(gè)規(guī)律,則21+22+23+24+…+22017的末位數(shù)字是( )
A.0
B.2
C.4
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】幾個(gè)人共同種一批樹苗,如果每人種12棵,則剩下6棵樹苗未種;如果每人種15棵,則缺6棵樹苗.求參與種樹的人數(shù)和樹苗的總數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+分別與x軸、y軸交于B、C兩點(diǎn),點(diǎn)A在x軸上,∠ACB=90°,拋物線y=ax2+bx+經(jīng)過A,B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)M是直線BC上方拋物線上的一點(diǎn),過點(diǎn)M作MH⊥BC于點(diǎn)H,作MD∥y軸交BC于點(diǎn)D,求△DMH周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把點(diǎn)M(-2,1)向右平移3個(gè)單位長度,再向下平移2個(gè)單位長度后得到點(diǎn)N,則點(diǎn)N的坐標(biāo)為( )
A.(-4,4)B.(-5,3)C.(1,-1)D.(-5,-1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com