【題目】二次函數(shù)圖象的頂點在原點O,且經(jīng)過點A(1,);點F(0,1)在y軸上.直線y=-1與y軸交于點H.
(1)求二次函數(shù)的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=-1交于點M,求證:點M到∠OFP兩邊距離相等.
【答案】(1)y=x2;(2)見解析.
【解析】
(1)由于二次函數(shù)圖象的頂點在原點O,可設(shè)二次函數(shù)的解析式為y=ax2.將點A(1,)代入,求出a的值,得到二次函數(shù)的解析式;
(2)設(shè)點P的坐標為(x,x2),過點P作PB⊥y軸于點B,在Rt△BPF中利用勾股定理求出PF==.根據(jù)PF=PM,得出∠PFM=∠PMF,又根據(jù)平行線的性質(zhì)得出∠MFH=∠PMF,等量代換得出∠PFM=∠MFH,那么FM平分∠OFP,點M到∠OFP兩邊距離相等.
(1)解:設(shè)二次函數(shù)的解析式為y=ax2.
將點A(1,)代入,得a=,
所以二次函數(shù)的解析式為y=x2;
(2)證明:設(shè)點P的坐標為(x,x2),
過點P作PB⊥y軸于點B,則BF=| x2-1|,PB=x,
∴Rt△BPF中,PF==.
∵PM⊥直線y=-1,
∴PM=x2+1,
∴PF=PM,
∴∠PFM=∠PMF,
又∵PM∥y軸,
∴∠MFH=∠PMF,
∴∠PFM=∠MFH,
∴FM平分∠OFP,
∴點M到∠OFP兩邊距離相等.
科目:初中數(shù)學 來源: 題型:
【題目】對于任意一個三位數(shù),將它任意兩個數(shù)位上的數(shù)字對調(diào)后得到一個首位不為0的新的三位數(shù)(可以與相同),記,在所有可能的情況中,當最小時,我們稱此時的是的“平安快樂數(shù)”,并規(guī)定.例如:318按上述方法可得新數(shù)381、813、138,因為,,,而,所以138是318的“平安快樂數(shù)”,此時.
(1)168的“平安快樂數(shù)”為_______________,______________;
(2)若(,都是正整數(shù)),交換其十位與百位上的數(shù)字得到新數(shù),當是13的倍數(shù)時,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某縣舉辦老、中、青三個年齡段五公里競走活動,其人數(shù)比為,如圖所示的扇形統(tǒng)計圖表示 上述分布情況,已知老人有人,則下列說法不正確的是( )
A. 老年所占區(qū)域的圓心角是B. 參加活動的總?cè)藬?shù)是人
C. 中年人比老年人多D. 老年人比青年人少人
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖示,若△ABC內(nèi)一點P滿足∠PAC=∠PBA=∠PCB,則點P為△ABC的布洛卡點.三角形的布洛卡點(Brocard point)是法國數(shù)學家和數(shù)學教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當時的人們所注意,1875年,布洛卡點被一個數(shù)學愛好者法國軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點Q為△DEF的布洛卡點,DQ=1,則EQ+FQ=( )
A.5 B.4 C.3+ D.2+
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形方格紙中,我們把頂點都在“格點”上的三角形稱為“格點三角形“,如圖,△ABC是一個格點三角形,點A的坐標為(﹣1,2).
(1)點B的坐標為 ,△ABC的面積為 ;
(2)在所給的方格紙中,請你以原點O為位似中心,將△ABC放大為原來的2倍,放大后點A、B的對應(yīng)點分別為A1、B1,點B1在第一象限;
(3)在(2)中,若P(a,b)為線段AC上的任一點,則放大后點P的對應(yīng)點P1的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,△ABC的位置如圖所示,直線l經(jīng)過點(0,1),并且與x軸平行,△A1B1C1與△ABC關(guān)于直線l對稱.
(1)畫出三角形A1B1C1;
(2)若點P(m,n)在AC邊上,則點P關(guān)于直線l的對稱點P1的坐標為 ;
(3)在直線l上畫出點Q,使得QA+QC的值最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明大學畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了美化環(huán)境,建設(shè)宜居成都,我市準備在一個廣場上種植甲、乙兩種花卉.經(jīng)市場調(diào)查,甲種花卉的種植費用(元)與種植面積之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費用為每平方米100元.
(1)直接寫出當和時,與的函數(shù)關(guān)系式;
(2)廣場上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植費用最少?最少總費用為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)部門為了解本部門工人的生產(chǎn)能力情況,進行了抽樣調(diào)查.該部門隨機抽取了30名工人某天每人加工零件的個數(shù),數(shù)據(jù)如下:
20 | 21 | 19 | 16 | 27 | 18 | 31 | 29 | 21 | 22 |
25 | 20 | 19 | 22 | 35 | 33 | 19 | 17 | 18 | 29 |
18 | 35 | 22 | 15 | 18 | 18 | 31 | 31 | 19 | 22 |
整理上面數(shù)據(jù),得到條形統(tǒng)計圖:
樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如下表所示:
統(tǒng)計量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 23 | m | 21 |
根據(jù)以上信息,解答下列問題:
(1)上表中眾數(shù)m的值為 ;
(2)為調(diào)動工人的積極性,該部門根據(jù)工人每天加工零件的個數(shù)制定了獎勵標準,凡達到或超過這個標準的工人將獲得獎勵.如果想讓一半左右的工人能獲獎,應(yīng)根據(jù) 來確定獎勵標準比較合適.(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”)
(3)該部門規(guī)定:每天加工零件的個數(shù)達到或超過25個的工人為生產(chǎn)能手.若該部門有300名工人,試估計該部門生產(chǎn)能手的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com