【題目】如圖,A信封中裝有兩張卡片,卡片上分別寫著4cm、2cm,B信封中裝有三張卡片,卡片上分別寫著3cm、5cm、2cm.A、B信封外有一張寫著5cm的卡片,所有卡片的形狀、大小完全相同,現(xiàn)隨機(jī)從兩個(gè)信封中各取一張卡片,與信封外的卡片放在一起,用卡片上標(biāo)明的數(shù)分別作為三條線段的長(zhǎng)度.

(1)求這三條線段能組成三角形的概率(列舉法、列表法或樹形圖法);

(2)求這三條線段能組成直角三角形的概率.

【答案】(1);(2).

【解析】

(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與這三條線段能組成三角形的情況,再利用概率公式即可求得答案;
(2)由(1)即可求得這三條線段能組成直角三角形的情況,再利用概率公式即可求得答案.

解:(1)畫樹狀圖得:

∵共有6種等可能的結(jié)果,這三條線段能組成三角形的有4種情況,

∴這三條線段能組成三角形的概率為:;

(2)∵這三條線段能組成直角三角形的只有4cm,3cm5cm這一種情況,

∴這三條線段能組成直角三角形的概率為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:

在函數(shù):y=-2x-1;y=3x;y=;y=-;y=(x<0)中,y隨x增大而減小的有3個(gè)函數(shù);

對(duì)角線互相垂直平分且相等的四邊形是正方形;

反比例函數(shù)圖象是兩條無限接近坐標(biāo)軸的曲線,它只是中心對(duì)稱圖形;

已知數(shù)據(jù)x1、x2、x3的方差為s2,則數(shù)據(jù)x1+2,x3+2,x3+2的方差為s3+2

其中是真命題的個(gè)數(shù)是(

A1個(gè) B2個(gè) C3個(gè) D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】主題班會(huì)上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學(xué)們的一番熱議,達(dá)成以下四個(gè)觀點(diǎn):

A.放下自我,彼此尊重; B.放下利益,彼此平衡;

C.放下性格,彼此成就; D.合理競(jìng)爭(zhēng),合作雙贏.

要求每人選取其中一個(gè)觀點(diǎn)寫出自己的感悟.根據(jù)同學(xué)們的選擇情況,小明繪制了下面兩幅不完整的圖表,請(qǐng)根據(jù)圖表中提供的信息,解答下列問題:

 觀點(diǎn)

頻數(shù) 

頻率 

 A

 a

 0.2

 B

 12

 0.24

 C

 8

 b

 D

 20

 0.4

(1)參加本次討論的學(xué)生共有   人;表中a   b   ;

(2)在扇形統(tǒng)計(jì)圖中,求D所在扇形的圓心角的度數(shù);

(3)現(xiàn)準(zhǔn)備從A,B,CD四個(gè)觀點(diǎn)中任選兩個(gè)作為演講主題,請(qǐng)用列表或畫樹狀圖的方法求選中觀點(diǎn)D(合理競(jìng)爭(zhēng),合作雙贏)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸正半軸相交于A、B兩點(diǎn),軸相交于點(diǎn)C,對(duì)稱軸為直線OA=OC,則下列結(jié)論:①④關(guān)于的方程有一個(gè)根為其中正確的結(jié)論個(gè)數(shù)有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)認(rèn)真閱讀下面的數(shù)學(xué)小探究系列,完成所提出的問題:

(1)探究1,如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=3,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,過點(diǎn)D做BC邊上的高DE,則DE與BC的數(shù)量關(guān)系是   ,△BCD的面積為   

(2)探究2,如圖②,在一般的Rt△ABC中,∠ACB=90°,BC=a,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,請(qǐng)用含a的式子表示△BCD的面積,并說明理由;

(3)探究3:如圖③,在等腰三角形ABC中,AB=AC,BC=a,將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連接CD,試探究用含a的式子表示△BCD的面積,要有探究過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,AD=3,DC=5,AB=4,B=45°.動(dòng)點(diǎn)MB點(diǎn)出發(fā)沿線段BC以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從C點(diǎn)出發(fā)沿射線CD以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

(1)BC=____.

(2)MC=_____.(用t表示)

(3)t為何值時(shí),四邊形AMCD為平行四邊形.

(4)直接寫出t為何值時(shí),△AND為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一粒木質(zhì)中國(guó)象棋棋子,它的正面雕刻一個(gè)字,它的反面是平的,將棋子從一定高度下拋,落地反彈后可能是字面朝上,也可能是字朝下.由于棋子的兩面不均勻,為了估計(jì)字朝上的機(jī)會(huì),某實(shí)驗(yàn)小組做了棋子下拋實(shí)驗(yàn),并把實(shí)驗(yàn)數(shù)據(jù)整理如下:

實(shí)驗(yàn)次數(shù)

20

40

60

80

100

120

140

160

字朝上的頻數(shù)

14

18

38

47

52

78

88

相應(yīng)的頻率

0.7

0.45

0.63

0.59

0.52

0.55

0.56

(1)請(qǐng)將表中數(shù)據(jù)補(bǔ)充完整,并畫出折線統(tǒng)計(jì)圖中剩余部分.

(2)如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),這個(gè)實(shí)驗(yàn)的頻率將接近于該事件發(fā)生的機(jī)會(huì),請(qǐng)估計(jì)這個(gè)機(jī)會(huì)約是多少?

(3)在(2)的基礎(chǔ)上,進(jìn)一步估計(jì):將該字棋子,按照實(shí)驗(yàn)要求連續(xù)拋2次,則剛好使字一次字面朝上,一次朝下的可能性為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊中,點(diǎn)D在線段AC上,EBC延長(zhǎng)線上一點(diǎn),且CD = CE,連接BD,連接AE

(1)如圖1,若求線段AD的長(zhǎng);

(2)如圖2,若F是線段BD的中點(diǎn),連接AF,若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x+2x軸、y軸分別于點(diǎn)A、B,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣,且拋物線經(jīng)過A、B兩點(diǎn),交x軸于另一點(diǎn)C.

(1)求拋物線的解析式;

(2)點(diǎn)M是拋物線x軸上方一點(diǎn),∠MBA=CBO,求點(diǎn)M的坐標(biāo);

(3)過點(diǎn)AAB的垂線交y軸于點(diǎn)D,平移直線AD交拋物線于點(diǎn)E、F兩點(diǎn),連結(jié)EO、FO.若△EFO為以EF為斜邊的直角三角形,求平移后的直線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案