【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過點(diǎn)D和M,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,與BC的交點(diǎn)為N.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若點(diǎn)P在直線DM上,且使△OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).
【答案】(1) y=-;y=-x-1(2)(-10,9)或(8,-9).
【解析】試題分析:本題主要考查一次函數(shù)的解析式,反比例函數(shù)的解析式以及一次函數(shù)圖象與性質(zhì),(1)首先根據(jù)正方形性質(zhì)得到A,B的坐標(biāo),再根據(jù)AD=2DB和AM=2MO求出D和M的坐標(biāo),最后代入一次函數(shù)和反比例函數(shù)中求解出解析式,(2)首先求解出N點(diǎn)坐標(biāo),之后求出梯形OMNC的面積,再列出△OPM的面積表達(dá)式,最后根據(jù)求解出P點(diǎn)的坐標(biāo).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個圖形經(jīng)過旋轉(zhuǎn),有以下說法:
①對應(yīng)線段平行;②對應(yīng)線段相等;③對應(yīng)角相等;④圖形的形狀和大小都沒有發(fā)生變化.其中正確的說法是( )
A. ①②③B. ①②④
C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上距離原點(diǎn)2個單位長度的點(diǎn)所表示的數(shù)是( )
A.2
B.﹣2
C.2或﹣2
D.1或﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,2),與y軸的負(fù)半軸交于點(diǎn)B,且OB=6.
(1)求函數(shù)y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點(diǎn)C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點(diǎn)P,使得S△POC=9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于平面內(nèi)任一點(diǎn)(m,n), 規(guī)定以下兩種變換:
⑴f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);
⑵g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).
按照以上變換有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(2,﹣3)]= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC的邊BC上一點(diǎn),AB=4,AD=2,∠DAC=∠B,如果△ABD的面積為15,那么△ACD的面積為( )
A. 15 B. 10 C. D. 5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com