【題目】已知:如圖1,OM是∠AOB的平分線,點C在OM上,OC=5,且點C到OA的距離為3.過點C作CD⊥OA,CE⊥OB,垂足分別為D、E,易得到結(jié)論:OD+OE=_________;
(1)把圖1中的∠DCE繞點C旋轉(zhuǎn),當CD與OA不垂直時(如圖2),上述結(jié)論是否成立?并說明理由;
(2)把圖1中的∠DCE繞點C旋轉(zhuǎn),當CD與OA的反向延長線相交于點D時:
①請在圖3中畫出圖形;
②上述結(jié)論還成立嗎?若成立,請給出證明;若不成立,請直接寫出線段OD、OE之間的數(shù)量關(guān)系,不需證明.
【答案】8;(1)上述結(jié)論成立;(2)①見詳解;②上述結(jié)論不成立,.
【解析】
先利用勾股定理求出OD,再利用角平分線定理得出DE=CD,即可得出結(jié)論;
(1)先判斷出∠DCQ=∠ECP,進而判斷出△CQD≌△CPE,得出DQ=PE,即可得出結(jié)論;
(2)①依題意即可補全圖形;
②先判斷出∠DCQ=∠ECP,進而判斷出△CQD≌△CPE,得出DQ=PE,即可得出結(jié)論.
解:∵,∴,
在中,,,
∴ ,
∵點是的平分線上的點,
∴,同理,,
∴,
故答案為8;
(1)上述結(jié)論成立.
理由:如圖2,
過點作于,于,
∴,
∴,
由旋轉(zhuǎn)知,,
∴,
∴,
∵點在的平分線上,且,,
∴,
∵,
∴,
∴,
∵,,
∴;
(2)①補全圖形如圖3.
②上述結(jié)論不成立,.
理由:過點作于,于,
∴,
∴,
由旋轉(zhuǎn)知,,
∴,
∴,
∵點在的平分線上,且,,
∴,
∵,
∴,
∴,
∵,,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】邊長相等的兩個正方形ABCO、ADEF如圖擺放,正方形ABCO的邊OA、OC在坐標軸上,ED交線段OC于點G,ED的延長線交線段BC于點P,連AG,已知OA長為.
(1)求證:;
(2)若,AG=2,求點G的坐標;
(3)在(2)條件下,在直線PE上找點M,使以M、A、G為頂點的三角形是等腰三角形,求出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知E、F是□ABCD對角線AC上的兩點,且BE⊥AC,DF⊥AC.
(1)求證:△ABE≌△CDF;
(2)請寫出圖中除△ABE≌△CDF外其余兩對全等三角形(不再添加輔助線).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F為AD上兩點,AE=EF=FD,連接BE、CF并延長,交于點G, GB=GC.
(1)求證:四邊形ABCD是矩形;
(2)若△GEF的面積為2.
①求四邊形BCFE的面積;
②四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】教師辦公室有一種可以自動加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10 ℃,待加熱到100 ℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例函數(shù)關(guān)系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫均為20 ℃,接通電源后,水溫y(℃)和通電時間x(min)之間的關(guān)系如圖所示,回答下列問題:
(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的函數(shù)關(guān)系式;
(2)求出圖中a的值;
(3)李老師這天早上7:30將飲水機電源打開,若他想在8:10上課前喝到不低于40 ℃的開水,則他需要在什么時間段內(nèi)接水?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年3月,某集團隨機抽取所屬的m家商業(yè)連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.
評估成績分 | 評定等級 | 頻數(shù) |
A | 2 | |
B | b | |
C | 15 | |
D | 6 |
根據(jù)以上信息解答下列問題:
(1)求m,b的值;
(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大;
(3)從評估成績不少于80分的連鎖店中,任選2家介紹營銷經(jīng)驗,用樹狀圖或列表法求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了預防“流感”,某學校在休息日用“藥熏”消毒法對教室進行消毒.已知藥物釋放過程中,室內(nèi)每立方米的含藥量y(毫克)與時間x(時)成正比例;藥物釋放結(jié)束后,y與x成反比例;如圖所示,根據(jù)圖中提供的信息,解答下列問題:
(1)寫出從藥物釋放開始,y與x之間的兩個函數(shù)解析式;
(2)據(jù)測定,當藥物釋放結(jié)束后,每立方米的含藥量降至0.25毫克以下時,學生方可進入教室,那么從藥物釋放開始,至少需要經(jīng)過多長時間,學生才能進入教室?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某服裝店用4000元購進一批某品牌的文化衫若干件,很快售完,該店又用6300元錢購進第二批這種文化衫,所進的件數(shù)比第一批多40%,每件文化衫的進價比第一批每件文化衫的進價多10元,請解答下列問題:
(1)求購進的第一批文化衫的件數(shù);
(2)為了取信于顧客,在這兩批文化衫的銷售中,售價保持了一致.若售完這兩批文化衫服裝店的總利潤不少于4100元錢,那么服裝店銷售該品牌文化衫每件的最低售價是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【本小題滿分11分】如圖,已知拋物線的頂點D的坐標為(1,),且與x軸交于A、B兩點,與y軸交于C點,A點的坐標為(4,0).P點是拋物線上的一個動點,且橫坐標為m.
(l)求拋物線所對應的二次函數(shù)的表達式;
(2)若動點P滿足∠PAO不大于45°,求P點的橫坐標m的取值范圍;
(3)當P點的橫坐標時,過p點作y軸的垂線PQ,垂足為Q.問:是否存在P點,使∠QPO=∠BCO?若存在,請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com